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 Structure of the Set of Real Numbers 

 Review of Operations on the Set of Real Numbers 
Before we start our journey through algebra, let us review the structure of the real number system, properties of 
four operations, order of operations, the concept of absolute value, and set-builder and interval notation. 

R1  Structure of the Set of Real Numbers  

It is in human nature to group and classify objects with the same properties. For 
instance, items found in one’s home can be classified as furniture, clothing, 
appliances, dinnerware, books, lighting, art pieces, plants, etc., depending on 
what each item is used for, what it is made of, how it works, etc. Furthermore, 
each of these groups could be subdivided into more specific categories (groups). 
For example, furniture includes tables, chairs, bookshelves, desks, etc. 
Sometimes an item can belong to more than one group. For example, a piece of 
furniture can also be a piece of art. Sometimes the groups do not have any 
common items (e.g. plants and appliances). Similarly to everyday life, we like to 
classify numbers with respect to their properties. For example, even or odd numbers, prime or composite numbers, 
common fractions, finite or infinite decimals, infinite repeating decimals, negative numbers, etc. In this section, 
we will take a closer look at commonly used groups (sets) of real numbers and the relations between those groups.  
 

 Set Notation and Frequently Used Sets of Numbers 
 

We start with terminology and notation related to sets.  
  

 Definition 1.1 A set is a collection of objects, called elements (or members) of this set.  
 
 
 

  Roster Notation:  A set can be given by listing its elements within the set brackets { } (braces).  
    The elements of the set are separated by commas.  
    To indicate that a pattern continues, we use three dots … .  
    Examples: 
    If set 𝐴𝐴 consists of the numbers 1, 2, and 3, we write 𝐴𝐴 = {1,2,3}. 
    If set 𝐵𝐵 consists of consecutive counting numbers starting from 5, we write 𝐵𝐵 = {5,6,7, … }. 
   

 More on Notation: To indicate that the number 2 is an element of set 𝐴𝐴, we write 𝟐𝟐 ∈ 𝑨𝑨.  
    To indicate that the number 2 is not an element of set 𝐵𝐵, we write 𝟐𝟐 ∉ 𝑨𝑨. 
    A set with no elements, called empty set, is denoted by the symbol ∅ or { }. 
     

 
In this course we will be working with the set of real numbers, denoted by ℝ. To visualise  
this set, we construct a line and choose two distinct points on it, 0 and 1, to establish 
direction and scale. This makes it a number line. Each real number 𝑟𝑟 can be identified with 
exactly one point on such a number line by choosing the endpoint of the segment of length 
|𝑟𝑟| that starts from 0 and follows the line in the direction of 1, for positive 𝑟𝑟, or in the 
direction opposite to 1, for negative 𝑟𝑟.   

 

𝒓𝒓 > 0 1 0 𝒓𝒓 < 0 

positive direction negative direction 



2   | Section R1 
 

Review of Operations on the Set of Real Numbers 

The set of real numbers contains several important subgroups (subsets) of numbers. The 
very first set of numbers that we began our mathematics education with is the set of 
counting numbers {𝟏𝟏,𝟐𝟐,𝟑𝟑, … }, called natural numbers and denoted by ℕ.  

 

          Natural numbers ℕ 

 The set of natural numbers together with the number 𝟎𝟎 creates the set of whole numbers 
{𝟎𝟎,𝟏𝟏,𝟐𝟐,𝟑𝟑, … }, denoted by 𝕎𝕎. 

 

       Whole numbers 𝕎𝕎 

Notice that if we perform addition or multiplication of numbers from either of the above 
sets, ℕ and 𝕎𝕎, the result will still be an element of the same set. We say that the set of 
natural numbers ℕ and the set of whole numbers 𝕎𝕎 are both closed under addition and  
multiplication.   

However, if we wish to perform subtraction of natural or whole numbers, the result may 
become a negative number. For example, 2 − 5 = −3 ∉ 𝕎𝕎, so neither the set of whole 
numbers nor natural numbers is closed under subtraction. To be able to perform subtraction 
within the same set, it is convenient to extend the set of whole numbers to include negative 
counting numbers. This creates the set of integers {… ,−𝟑𝟑,−𝟐𝟐,−𝟏𝟏,𝟎𝟎,𝟏𝟏,𝟐𝟐,𝟑𝟑, … }, denoted 
by ℤ. 

  

 

       
   Integers ℤ 

Alternatively, the set of integers can be recorded using the ± sign: {𝟎𝟎, ±𝟏𝟏, ±𝟐𝟐, ±𝟑𝟑, … }. The 
± sign represents two numbers at once, the positive and the negative. 

So the set of integers ℤ is closed under addition, subtraction and multiplication. What 
about division? To create a set that would be closed under division, we extend the set of 
integers by including all quotients of integers (all common fractions). This new set is called 
the set of rational numbers and denoted by ℚ. Here are some examples of rational 
numbers: 3

1
= 𝟑𝟑, 1

2
= 𝟎𝟎.𝟓𝟓, − 𝟕𝟕

𝟒𝟒
, or 4

3
= 𝟏𝟏.𝟑𝟑�. 

Thus, the set of rational numbers ℚ is closed under all four operations. It is quite difficult 
to visualize this set on the number line as its elements are nearly everywhere. Between any 
two rational numbers, one can always find another rational number, simply by taking an 
average of the two. However, all the points corresponding to rational numbers still do not 
fulfill the whole number line. Actually, the number line contains a lot more unassigned 
points than points that are assigned to rational numbers. The remaining points correspond 
to numbers called irrational and are denoted by 𝕀𝕀ℚ. Here are some examples of irrational 
numbers: √𝟐𝟐,𝝅𝝅,𝒆𝒆, or 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏… .  

4 5 … 3 1 2 

0 4 5 … 3 1 2 

… − 𝟑𝟑 −𝟐𝟐 2 𝟑𝟑 … 1 −𝟏𝟏 0 

negative integers ℤ−         0         positive integers ℤ+ 
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 Structure of the Set of Real Numbers 

By definition, the two sets, ℚ and 𝕀𝕀ℚ fill the entire number line, 
which represents the set of real numbers, ℝ. 

The sets ℕ,𝕎𝕎,ℤ,ℚ, 𝕀𝕀ℚ, and ℝ are related to each other as in 
the accompanying diagram. One can make the following 
observations: 

ℕ ⊂ 𝕎𝕎 ⊂  ℤ ⊂ ℚ ⊂ ℝ, where ⊂ (read is a subset) represents 
the operator of inclusion of sets; 

ℚ and 𝕀𝕀ℚ are disjoint (they have no common element); 

ℚ together with 𝕀𝕀ℚ create ℝ. 

 
So far, we introduced six double-stroke letter signs to denote the main sets of numbers. 
However, there are many more sets that one might be interested in describing. Sometimes 
it is enough to use a subindex with the existing letter-name. For instance, the set of all 
positive real numbers can be denoted as ℝ+ while the set of negative integers can be 
denoted by ℤ−. But how would one represent, for example, the set of even or odd numbers 
or the set of numbers divisible by 3, 4, 5, and so on? To describe numbers with a particular 
property, we use the set-builder notation. Here is the structure of set-builder notation: 
 

 

                   { 𝒙𝒙 ∈ 𝒔𝒔𝒔𝒔𝒔𝒔  |  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝒙𝒙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 } 

 
 

For example, to describe the set of even numbers, first, we think of a property that 
distinguishes even numbers from other integers. This is divisibility by 2. So each even 
number 𝑛𝑛 can be expressed as 2𝑘𝑘, for some integer 𝑘𝑘. Therefore, the set of even numbers 
could be stated as {𝑛𝑛 ∈ ℤ | 𝑛𝑛 = 2𝑘𝑘,𝑘𝑘 ∈ ℤ} (read: The set of all integers 𝑛𝑛 such that each 𝑛𝑛 
is of the form 2𝑘𝑘, for some integral 𝑘𝑘.) 

To describe the set of rational numbers, we use the fact that any rational number can be 
written as a common fraction. Therefore, the set of rational numbers ℚ can be described as 

�𝑥𝑥 � 𝑥𝑥 = 𝑝𝑝
𝑞𝑞

, 𝑝𝑝, 𝑞𝑞 ∈ ℤ, 𝑞𝑞 ≠ 0� (read: The set of all real numbers 𝑥𝑥 that can be expressed as 

a fraction 𝑝𝑝
𝑞𝑞
, for integral 𝑝𝑝 and 𝑞𝑞, with 𝑞𝑞 ≠ 0.) 

 Convention:  If the description of a set refers to the set of real numbers, there is no need to state 𝑥𝑥 ∈ ℝ 
in the first part of set-builder notation. For example, we can write {𝒙𝒙 ∈ ℝ | 𝒙𝒙 > 𝟎𝟎} or 
{𝒙𝒙| 𝒙𝒙 > 𝟎𝟎}. Both sets represent the set of all positive real numbers, which could also be 
recorded as simply ℝ+. However, if we work with any other major set, this set must be 
stated. For example, to describe all positive integers ℤ+ using set-builder notation, we write  
{𝒙𝒙 ∈ ℤ | 𝒙𝒙 > 𝟎𝟎} and ℤ is essential there. 

 

 

 

   any letter 
here “such that” 

or “that” 

is an element of a 
general set, such 
as ℝ,ℕ,ℤ, etc. 

list of properties 
separated by commas 

set bracket 

Irrational 
Real Numbers 

Rational 
Integers Whole 

Natural 
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 Listing Elements of Sets Given in Set-builder Notation 
   

List the elements of each set. 

a.  {𝑛𝑛 ∈ ℤ |−2 ≤ 𝑛𝑛 < 5} b. {𝑛𝑛 ∈ ℕ |𝑛𝑛 = 5𝑘𝑘,𝑘𝑘 ∈ ℕ} 
 
a.   This is the set of integers that are at least −2 but smaller than 5. So this is 

{−2,−1, 0, 1, 2, 3, 4}. 
 

b. This is the set of natural numbers that are multiples of 5. Therefore, this is the infinite 
set {5, 10, 15, 20, … }. 

 
 

 Writing Sets with the Aid of Set-builder Notation 
   

Use set-builder notation to describe each set.  
a.  {1, 4, 9, 16, 25, … } b. {−2, 0, 2, 4, 6} 
 
a.   First, we observe that the given set is composed of consecutive perfect square numbers, 

starting from 1. Since all the elements are natural numbers, we can describe this set 
using the set-builder notation as follows: {𝑛𝑛 ∈ ℕ | 𝑛𝑛 = 𝑘𝑘2, for 𝑘𝑘 ∈ ℕ}. 

b. This time, the given set is finite and lists all even numbers starting from −2 up to 6. 
Since the general set we work with is the set of integers, the corresponding set in set-
builder notation can be written as {𝑛𝑛 ∈ ℤ  | 𝑛𝑛 is even,−2 ≤ 𝑛𝑛 ≤ 6 }, or 
{𝑛𝑛 ∈ ℤ  | −2 ≤ 𝑛𝑛 ≤ 6, 𝑛𝑛 = 2𝑘𝑘, for 𝑘𝑘 ∈ ℤ }. 

 
   

 Observations:   * There are many equivalent ways to describe a set using the set-builder notation.  

 * The commas used between the conditions (properties) stated after the “such that” bar 
play the same role as the connecting word “and”. 

 
 Rational Decimals 
 

How can we recognize if a number in decimal notation is rational or irrational? 

A terminating decimal (with a finite number of nonzero digits after the decimal dot, like 1.25 or 0.1206) can be 
converted to a common fraction by replacing the decimal dot with the division by the corresponding power of 10 
and then simplifying the resulting fraction. For example,  

1.25 = 125
100

= 5
4
,  or  0.1206 = 1206

10000
= 603

5000
 . 

       
 

Therefore, any terminating decimal is a rational number. 

Solution           

Solution           

  2 places  
→ 2 zeros 
 

simplify 
by 25 

 4 places  
→ 4 zeros 
 

simplify 
by 2 
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One can also convert a nonterminating (infinite) decimal to a common fraction, as long as there 
is a recurring (repeating) sequence of digits in the decimal expansion. This can be done using 
the method shown in Example 3a. Hence, any infinite repeating decimal is a rational number.  

Also, notice that any fraction 𝑚𝑚
𝑛𝑛

 can be converted to either a finite or infinite repeating decimal. This is because 
since there are only finitely many numbers occurring as remainders in the long division process when dividing by 
𝑛𝑛, eventually, either a remainder becomes zero, or the sequence of remainders starts repeating.  

So a number is rational if and only if it can be represented by a finite or infinite repeating decimal. Since 
the irrational numbers are defined as those that are not rational, we can conclude that a number is irrational if 
and only if it can be represented as an infinite non-repeating decimal.  

 

 Proving that an Infinite Repeating Decimal is a Rational Number 
   

Show that the given decimal is a rational number. 

a.  0.333 … b. 2.345���� 
 
a. Let 𝑎𝑎 = 0.333 … . After multiplying this equation by 10, we obtain 10𝑎𝑎 = 3.333 … .  

Since in both equations, the number after the decimal dot is exactly the same, after 
subtracting the equations side by side, we obtain 

 
 
− �10𝑎𝑎 = 3.333 …

𝑎𝑎 = 0.333 …  
 9𝑎𝑎 = 3

   

which solves to 𝑎𝑎 = 3
9

= 1
3
. So 0.333 … = 1

3
 is a rational number.  

b. Let 𝑎𝑎 = 2.345����. The bar above 45 tells us that the sequence 45 repeats forever. To use 
the subtraction method as in solution to Example 3a, we need to create two equations 
involving the given number with the decimal dot moved after the repeating sequence 
and before the repeating sequence. This can be obtained by multiplying the equation 
𝑎𝑎 = 2.345���� first by 1000 and then by 10, as below.  

 
 
− �1000𝑎𝑎 = 2345. 45����

10𝑎𝑎 = 23. 45����  
 990𝑎𝑎 = 2322

 

  Therefore, 𝑎𝑎 = 2322
990

= 129
55

= 2 19
55

, which proves that 2.345���� is rational. 

  

 Identifying the Main Types of Numbers  
   

List all numbers of the set  

�−10, −5.34, 0, 1, 12
3

, 3. 16����, 4
7

, √2, −√36, √−4, 𝜋𝜋, 9.010010001 … � that are  

a.  natural b. whole c.  integral d. rational e. irrational  
 

Solution           
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a. The only natural numbers in the given set are 1 and  12
3

= 4. 

b. The whole numbers include the natural numbers and the number 0, so we list 0, 1 and 
12
3

. 

c. The integral numbers in the given set include the previously listed 0, 1, 12
3

, and the 

negative integers −10 and −√36 = −6. 

d. The rational numbers in the given set include the previously listed integers 
0, 1, 12

3
,−10, −√36, the common fraction 4

7
, and the decimals −5.34 and 3. 16����. 

e. The only irrational numbers in the given set are the constant 𝜋𝜋 and the infinite decimal 
 9.010010001 … . 

Note: √−4  is not a real number. 
 
 
 

   

 R.1  Exercises  

 
True or False? If it is false, explain why. 

1. Every natural number is an integer.  2. Some rational numbers are irrational. 

3. Some real numbers are integers.   4. Every integer is a rational number. 

5. Every infinite decimal is irrational.  6. Every square root of an odd number is irrational. 
 
Use roster notation to list all elements of each set.  

7. The set of all positive integers less than 9  8. The set of all odd whole numbers less than 11   

9. The set of all even natural numbers  10. The set of all negative integers greater than −5  

11. The set of natural numbers between 3 and 9 12. The set of whole numbers divisible by 4 
  
Use set-builder notation to describe each set. 

13. {0, 1, 2, 3, 4, 5}      14. {4, 6, 8, 10, 12, 14}    

15. The set of all real numbers greater than −3  16. The set of all real numbers less than 21   

17. The set of all multiples of 3    18. The set of perfect square numbers up to 100 
  
Fill in each box with one of the signs ∈,∉,⊂,⊄ or =  to make the statement true. 

19. −3 ⎕ ℤ  20. {0} ⎕ 𝕎𝕎   21. ℚ ⎕ ℤ  

22. 0.3555 …  ⎕ 𝕀𝕀ℚ 23. √3 ⎕ ℚ   24. ℤ− ⎕ ℤ  

Solution           
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25. 𝜋𝜋 ⎕ ℝ  26. ℕ ⎕ ℚ   27. ℤ+ ⎕ ℕ  
 
For the given set, state the subset of (a) natural numbers, (b) whole numbers, (c) integers, (d) rational numbers, 
(e) irrational numbers, (f) real numbers. 

28. �−1, 2.16, −√25, 12
2

,−12
5

, 3. 25����, √5, 𝜋𝜋, 3.565665666 … �    

29. �0.999 … , −5.001, 0, 5 3
4

, 1.405����, 7
8

, √2, √16, √−9, 9.010010001 … � 
 
Show that the given decimal is a rational number. 

30.  0.555 …   31. 1. 02����   32. 0.134����  

33. 2.0125�����  34. 0.257�   35. 5.2254���� 
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R2  Number Line and Interval Notation  

As mentioned in the previous section, it is convenient to visualise the set of real numbers by identifying each 
number with a unique point on a number line. 

 Order on the Number Line and Inequalities 
  

  

 Definition 2.1 A number line is a line with two distinct points chosen on it. One of these points is 
designated as 0 and the other point is designated as 1.  

 

The length of the segment from 0 to 1 represents one unit and provides the scale that allows 
to locate the rest of the numbers on the line. The direction from 0 to 1, marked by an arrow 
at the end of the line, indicates the increasing order on the number line. The numbers 
corresponding to the points on the line are called the coordinates of the points.  

 

 

 

 

Note:  For simplicity, the coordinates of points on a number line are often identified with 
the points themselves.  

To compare numbers, we use inequality signs such as <,≤, >,≥, or ≠. For example, if 𝑎𝑎 
is smaller than 𝑏𝑏 we write 𝑎𝑎 < 𝑏𝑏. This tells us that the location of point 𝑎𝑎 on the number 
line is to the left of point 𝑏𝑏. Equivalently, we could say that 𝑏𝑏 is larger than 𝑎𝑎 and write 
𝑏𝑏 > 𝑎𝑎. This means that the location of 𝑏𝑏 is to the right of 𝑎𝑎. 

 

 Identifying Numbers with Points on a Number Line 
   

Match the numbers −2, 3.5,   𝜋𝜋, −1.5, 5
2
  with the letters on the number line:  

 
 
 

To match the given numbers with the letters shown on the number line, it is enough to order 
the numbers from the smallest to the largest. First, observe that negative numbers are 
smaller than positive numbers and −2 < −1.5. Then, observe that 𝜋𝜋 ≈ 3.14 is larger than 
5
2
 but smaller than 3.5. Therefore, the numbers are ordered as follows: 

−2 < −1.5 <
5
2

<  𝜋𝜋 < 3.5 

Thus, 𝑨𝑨 = −𝟐𝟐,𝑩𝑩 = −𝟏𝟏.𝟓𝟓,𝑪𝑪 = 𝟓𝟓
𝟐𝟐

,𝑫𝑫 =  𝝅𝝅, and 𝑬𝑬 = 𝟑𝟑.𝟓𝟓. 
 

 

𝒂𝒂 < 𝒃𝒃 

1 0 

the direction of number increase 

Solution           

D E C A B 
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Number Line and Interval Notation 

To indicate that a number 𝒙𝒙 is smaller or equal 𝒂𝒂, we write 𝒙𝒙 ≤ 𝒂𝒂. This tells us that the 
location of point 𝒙𝒙 on the number line is to the left of point 𝒂𝒂 or exactly at point 𝒂𝒂. Similarly, 
if 𝒙𝒙 is larger or equal 𝒂𝒂, we write 𝒙𝒙 ≥ 𝒂𝒂, and we locate 𝒙𝒙 to the right of point 𝒂𝒂 or exactly 
at point 𝒂𝒂. 

To indicate that a number 𝒙𝒙 is between 𝒂𝒂 and 𝒃𝒃, we write 𝒂𝒂 < 𝒙𝒙 < 𝒃𝒃. This means that the 
location of point 𝒙𝒙 on the number line is somewhere on the segment joining points 𝒂𝒂 and 
𝒃𝒃, but not at 𝒂𝒂 nor at 𝒃𝒃. Such stream of two inequalities is referred to as a three-part 
inequality. 

Finally, to state that a number 𝒙𝒙 is different than 𝒂𝒂, we write 𝒙𝒙 ≠ 𝒂𝒂. This means that the 
point 𝒙𝒙 can lie anywhere on the entire number line, except at the point 𝒂𝒂. 

Here is a list of some English phrases that indicate the use of particular inequality signs. 

English Phrases 
Inequality 

Sign(s) 

is less than; smaller than < 

is less or equal; smaller or equal; at most; is no more than ≤ 

is more than; larger than; greater than;  > 

is more or equal; larger or equal; greater or equal; at least; no less than ≥ 

is different than ≠ 

is between <     < 

 

 Using Inequality Symbols 
   

Write each statement as a single or a three-part inequality.  

a. −7 is less than 5  
b. 2𝑥𝑥 is greater or equal 6     
c. 3𝑥𝑥 + 1 is between −1 and 7  
d. 𝑥𝑥 is between 1 and 8, including 1 and excluding 8 
e. 5𝑥𝑥 − 2 is different than 0 
f. 𝑥𝑥 is negative 

 
a. Write −7 < 5. Notice: The inequality “points” to the smaller number. This is an 

example of a strong inequality. One side is “strongly” smaller than the other side. 

b. Write 2𝑥𝑥 ≥ 6. This is an example of a weak inequality, as it allows for equation. 

𝒂𝒂 
𝒙𝒙 

𝒂𝒂 
𝒙𝒙 

𝒂𝒂 
𝒙𝒙 

𝒃𝒃 

𝒂𝒂 
𝒙𝒙 𝒙𝒙 

Solution           
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c. Enclose 3𝑥𝑥 + 1 within two strong inequalities to obtain −1 < 3𝑥𝑥 + 1 < 7. Notice: 
The word “between” indicates that the endpoints are not included. 

d. Since 1 is included, the statement is 1 ≤ 𝑥𝑥 < 8. 

e. Write 5𝑥𝑥 − 2 ≠ 0. 

f. Negative 𝑥𝑥 means that 𝑥𝑥 is smaller than zero, so the statement is 𝑥𝑥 < 0. 
 
 

 Graphing Solutions to Inequalities in One Variable 
   

Using a number line, graph all 𝑥𝑥-values that satisfy (are solutions of) the given inequality 
or inequalities: 
a. 𝑥𝑥 > −2 b. 𝑥𝑥 ≤ 3    c. 1 ≤ 𝑥𝑥 < 4 

 
a. The 𝑥𝑥-values that satisfy the inequality  𝑥𝑥 > −2 are larger than −2, so we shade the 

part of the number line that corresponds to numbers greater than −2. Those are all 
points to the right of −2, but not including −2. To indicate that the −2 is not a solution 
to the given inequality, we draw a hollow circle at −2. 

 
 
 
b. The 𝑥𝑥-values that satisfy the inequality 𝑥𝑥 ≤ 3 are smaller than or equal to 3, so we 

shade the part of the number line that corresponds to the number 3 or numbers smaller 
than 3. Those are all points to the left of 3, including the point 3. To indicate that the 
3 is a solution to the given inequality, we draw a filled-in circle at 3. 

 

 

c. The 𝑥𝑥-values that satisfy the inequalities 1 ≤ 𝑥𝑥 < 4 are larger than or equal to 1 and 
at the same time smaller than 4. Thus, we shade the part of the number line that 
corresponds to numbers between 1 and 4, including the 1 but excluding the 4. Those 
are all the points that lie between 1 and 4, including the point 1 but excluding the point 
4. So, we draw a segment connecting 1 with 4, with a filled-in circle at 1 and a hollow 
circle at 4. 

 

 

 Interval Notation  
  
As shown in the solution to Example 3, the graphical solutions of inequalities in one variable result in a segment 
of a number line (if we extend the definition of a segment to include the endpoint at infinity). To record such a 
solution segment algebraically, it is convenient to write it by stating its left endpoint (corresponding to the lower 
number) and then the right endpoint (corresponding to the higher number), using appropriate brackets that would 
indicate the inclusion or exclusion of the endpoint. For example, to record algebraically the segment that starts 

Solution           

−𝟐𝟐 

𝟑𝟑 

𝟏𝟏 𝟒𝟒 
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from 2 and ends on 3, including both endpoints, we write [2, 3]. Such notation very closely depicts the graphical 
representation of the segment, , and is called interval notation.  

 
 
 

  Interval Notation:  A set of numbers satisfying a single inequality of the type <,≤, >, or ≥ can be recorded in 
interval notation, as stated in the table below. 

     

inequality set-builder 
notation 

graph interval 
notation 

comments 

𝑥𝑥 > 𝑎𝑎 {𝑥𝑥|𝑥𝑥 > 𝑎𝑎} 

 
 (𝒂𝒂,∞) 

- list the endvalues from  
  left to right 
- to exclude the endpoint use a         
  round bracket ( or ) 

𝑥𝑥 ≥ 𝑎𝑎 {𝑥𝑥|𝑥𝑥 ≥ 𝑎𝑎} 

 
 

[𝒂𝒂,∞) 

- infinity sign is used with a   
  round bracket, as there is no  
  last point to include 
- to include the endpoint use a 
  square bracket [ or ] 

𝑥𝑥 < 𝑎𝑎 {𝑥𝑥|𝑥𝑥 < 𝑎𝑎} 

 
 

(−∞,𝒂𝒂) 

- to indicate negative infinity, use 
  the negative sign in front of ∞ 
- to indicate positive infinity,  
  there is no need to write a positive  
  sign in front of the infinity sign   

𝑥𝑥 ≤ 𝑎𝑎 {𝑥𝑥|𝑥𝑥 ≤ 𝑎𝑎} 
 
 (−∞,𝒂𝒂] 

- remember to list the endvalues 
  from left to right; this also refers  
  to infinity signs 

 

   Similarly, a set of numbers satisfying two inequalities resulting in a segment of solutions 
can be recorded in interval notation, as stated below.  

 

 
   In addition, the set of all real numbers  ℝ is represented in the interval notation as (−∞,∞). 
 
 
 
 

inequality set-builder 
notation 

graph interval 
notation 

comments 

𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏 {𝑥𝑥|𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏} 
 
 (𝒂𝒂,𝒃𝒃) 

- we read:  
  an open interval from 𝑎𝑎 to 𝑏𝑏 
 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 {𝑥𝑥|𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏} 
 
 [𝒂𝒂,𝒃𝒃] 

- we read:  
  a closed interval from 𝑎𝑎 to 𝑏𝑏 
 

𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏 {𝑥𝑥|𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏} 

 
 (𝒂𝒂, 𝒃𝒃] 

- we read: an interval  from 𝑎𝑎 to 𝑏𝑏, 
  without 𝑎𝑎 but with 𝑏𝑏 
  This is called half-open or  
  half-closed interval. 

𝑎𝑎 ≤ 𝑥𝑥 < 𝑏𝑏 {𝑥𝑥|𝑎𝑎 ≤ 𝑥𝑥 < 𝑏𝑏} 
 
 [𝒂𝒂,𝒃𝒃) 

- we read: an interval  from 𝑎𝑎 to 𝑏𝑏, 
  with 𝑎𝑎 but without 𝑏𝑏 
  This is called half-open or  
  half-closed interval. 

𝟐𝟐 𝟑𝟑 

𝒂𝒂 

𝒂𝒂 

𝒂𝒂 

𝒂𝒂 

𝒂𝒂 𝒃𝒃 

𝒂𝒂 𝒃𝒃 

𝒂𝒂 𝒃𝒃 

𝒂𝒂 𝒃𝒃 
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 Writing Solutions to One Variable Inequalities in Interval Notation 
   

Write solutions to the inequalities from Example 3 in set-builder and interval notation.  

a. 𝑥𝑥 > −2 b. 𝑥𝑥 ≤ 3    c. 1 ≤ 𝑥𝑥 < 4 
 

a. The solutions to the inequality 𝑥𝑥 > −2  can be stated in set-builder notation as  
{𝒙𝒙|𝒙𝒙 > −𝟐𝟐}. Reading the graph of this set 

 
 
 from left to right, we start from −2, without −2, and go towards infinity. So, the 

interval of solutions is written as (−𝟐𝟐,∞). We use the round bracket to indicate that 
the endpoint is not included. The infinity sign is always written with the round bracket, 
as infinity is a concept, not a number. So, there is no last number to include. 

b. The solutions to the inequality 𝑥𝑥 ≤ 3  can be stated in set-builder notation as  
{𝒙𝒙|𝒙𝒙 ≤ 𝟑𝟑}. Again, reading the graph of this set 

 

 
 from left to right, we start from −∞  and go up to 3, including 3. So, the interval of 

solutions is written as (−∞,𝟑𝟑]. We use the square bracket to indicate that the endpoint 
is included. As before, the infinity sign takes the round bracket. Also, we use “−“ in 
front of the infinity sign to indicate negative infinity. 

c. The solutions to the three-part inequality 1 ≤ 𝑥𝑥 < 4  can be stated in set-builder 
notation as {𝒙𝒙|𝟏𝟏 ≤ 𝒙𝒙 < 𝟒𝟒}. Reading the graph of this set 

 

 
 from left to right, we start from 1, including 1, and go up to 4, excluding 4. So, the 

interval of solutions is written as [𝟏𝟏,𝟒𝟒). We use the square bracket to indicate 1 and 
the round bracket, to exclude 4. 

 
 Absolute Value, and Distance  

  
The absolute value of a number 𝑥𝑥, denoted |𝑥𝑥|, can be thought of as the distance from 𝑥𝑥 to 
0 on a number line. Based on this interpretation, we have |𝒙𝒙| = |−𝒙𝒙|. This is because both 
numbers 𝑥𝑥 and –𝑥𝑥 are at the same distance from 0. For example, since both 3 and −3 are 
exactly three units apart from the number 0, then |3| =  |−3| = 3. 

Since distance can not be negative, we have |𝒙𝒙| ≥ 𝟎𝟎. 

Here is a formal definition of the absolute value operator. 
 

 Definition 2.2 For any real number 𝑥𝑥,   |𝒙𝒙|  =
𝒅𝒅𝒅𝒅𝒅𝒅

 �   𝒙𝒙, 𝒊𝒊𝒊𝒊 𝒙𝒙 ≥ 𝟎𝟎
−𝒙𝒙, 𝒊𝒊𝒊𝒊 𝒙𝒙 < 𝟎𝟎 . 

Solution           

−𝟐𝟐 

𝟑𝟑 

𝟏𝟏 𝟒𝟒 
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The above definition of absolute value indicates that for 𝑥𝑥 ≥ 0 we use the equation |𝑥𝑥| =
𝑥𝑥, and for 𝑥𝑥 < 0 we use the equation |𝑥𝑥| = −𝑥𝑥 (the absolute value of 𝑥𝑥 is the opposite of 
𝑥𝑥, which is a positive number). 

 

 Evaluating Absolute Value Expressions 
   

Evaluate. 
a. −|−4| b. |−5| − |2|   c. |−5 − (−2)| 
 
a. Since |−4| = 4 then −|−4| = −𝟒𝟒. 

b. Since |−5| = 5 and |2| = 2 then |−5| − |2| = 5− 2 = 𝟑𝟑. 

c. Before applying the absolute value operator, we first simplify the expression inside the 
absolute value sign. So we have |−5 − (−2)| = |−5 + 2| = |−3| = 𝟑𝟑. 

 

On a number line, the distance between two points with coordinates 𝑎𝑎 and 𝑏𝑏 is calculated 
by taking the difference between the two coordinates. So, if 𝑏𝑏 > 𝑎𝑎, the distance is 𝑏𝑏 − 𝑎𝑎. 
However, if 𝑎𝑎 > 𝑏𝑏, the distance is 𝑎𝑎 − 𝑏𝑏. What if we don’t know which value is larger, 𝑎𝑎 
or 𝑏𝑏? Since the distance must be positive, we can choose to calculate any of the differences 
and apply the absolute value on the result. 

 

 
 
   

 Definition 2.3 The distance 𝑑𝑑(𝑎𝑎,𝑏𝑏) between points 𝑎𝑎 and 𝑏𝑏 on a number line is given by the expression 
|𝒂𝒂 − 𝒃𝒃|, or equivalently |𝒃𝒃 − 𝒂𝒂|.  

 

 
Notice that 𝑑𝑑(𝑥𝑥, 0) = |𝑥𝑥 − 0| = |𝑥𝑥|, which is consistent with the intuitive definition of 
absolute value of 𝑥𝑥 as the distance from 𝑥𝑥 to 0 on the number line. 

 

 Finding Distance Between Two Points on a Number Line 
   

Find the distance between the two given points on the number line. 
a. −3 and 5 b. 𝑥𝑥 and 2 
 
a. Using the distance formula for two points on a number line, we have 𝑑𝑑(−3,5) =

|−3 − 5| = |−8| = 𝟖𝟖. Notice that we could also calculate |5 − (−3)| = |8| = 𝟖𝟖. 

b. Following the formula, we obtain 𝑑𝑑(𝑥𝑥, 2) = |𝑥𝑥 − 2|. Since 𝑎𝑎 is unknown, the distance 
between 𝑎𝑎 and 2 is stated as an expression |𝒙𝒙 − 𝟐𝟐| rather than a specific number. 

 
 
 

𝒃𝒃 𝒂𝒂 

|𝒂𝒂 − 𝒃𝒃| 

Solution           

Solution           
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 R.2  Exercises  

 
Write each statement with the use of an inequality symbol.  

1. −6 is less than −3   2. 0 is more than −1 

3. 17 is greater or equal to 𝑥𝑥    4. 𝑥𝑥 is smaller or equal to 8 

5. 2𝑥𝑥 + 3 is different than zero   6. 2 − 5𝑥𝑥 is negative 

7. 𝑥𝑥 is between 2 and 5   8. 3𝑥𝑥 is between −5 and 7 

9. 2𝑥𝑥 is between −2 and 6, including −2 and excluding 6    

10. 𝑥𝑥 + 1 is between −5 and 11, excluding −5 and including 11 
 

Graph each set of numbers on a number line and write it in interval notation.  

11. {𝑥𝑥| 𝑥𝑥 ≥ −4}   12. {𝑥𝑥| 𝑥𝑥 ≤ −3} 

13. �𝑥𝑥� 𝑥𝑥 < 5
2
�    14. �𝑥𝑥� 𝑥𝑥 > −2

5
� 

15. {𝑥𝑥| 0 < 𝑥𝑥 < 6}   16. {𝑥𝑥| −1 ≤ 𝑥𝑥 ≤ 4} 

17. {𝑥𝑥| −5 ≤ 𝑥𝑥 < 16}   18. {𝑥𝑥| −12 < 𝑥𝑥 ≤ 4.5} 
 

Evaluate. 

19. −|−7|    20. |5| − |−13|   21. |11 − 19|  

22. |−5 − (−9)|   23. −|9| − |−3|   24. −|−13 + 7|   
  
Replace each ⎕ with one of the signs  < , >, ≤, ≥, =  to make the statement true.  

25. −7 ⎕− 5  26. |−16| ⎕− |16|  27. −3 ⎕− |3|  

28. 𝑥𝑥2 ⎕ 0  29. 𝑥𝑥 ⎕ |𝑥𝑥|   30. |𝑥𝑥| ⎕ |−𝑥𝑥|  
 
Find the distance between the given points.  
31. −7,−32    32. 46,−13   33. −2

3
, 5
6
 

34. 𝑥𝑥, 0    35. 5, 𝑦𝑦   36. 𝑥𝑥,𝑦𝑦 
 

Find numbers that are 5 units apart from the given point. 

37.  0  38. 3   39. 𝑎𝑎 
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R3  Properties and Order of Operations on Real Numbers  

In algebra, we are often in need of changing an expression to a different but equivalent form. This can be observed 
when simplifying expressions or solving equations. To change an expression equivalently from one form to 
another, we use appropriate properties of operations and follow the order of operations.  
 

 Properties of Operations on Real Numbers 

The four basic operations performed on real numbers are addition (+), subtraction (−), multiplication (∙), and 
division (÷). Here are the main properties of these operations: 

  

 Closure: The result of an operation on real numbers is also a real number. We can say that the set of 
real numbers is closed under addition, subtraction and multiplication.  

   We cannot say this about division, as division by zero is not allowed. 
 
 Neutral Element: A real number that leaves other real numbers unchanged under a particular operation.  

   For example, zero is the neutral element (also called additive identity) of addition, 
since 𝒂𝒂 + 𝟎𝟎 = 𝒂𝒂, and 𝟎𝟎 + 𝒂𝒂 = 𝒂𝒂, for any real number 𝑎𝑎. 

   Similarly, one is the neutral element (also called multiplicative identity) of 
multiplication, since 𝒂𝒂 ∙ 𝟏𝟏 = 𝒂𝒂, and 𝟏𝟏 ∙ 𝒂𝒂 = 𝒂𝒂, for any real number 𝑎𝑎. 

 
 Inverse Operations: Operations that reverse the effect of each other. For example, addition and subtraction 

are inverse operations, as 𝒂𝒂 + 𝒃𝒃 − 𝒃𝒃 = 𝒂𝒂, and 𝒂𝒂 − 𝒃𝒃 + 𝒃𝒃 = 𝒂𝒂, for any real 𝑎𝑎 and 𝑏𝑏. 

   Similarly, multiplication and division are inverse operations, as 𝒂𝒂 ∙ 𝒃𝒃 ÷ 𝒃𝒃 = 𝒂𝒂, and   
   𝒂𝒂 ∙ 𝒃𝒃 ÷ 𝒃𝒃 = 𝒂𝒂 for any real 𝑎𝑎 and 𝑏𝑏 ≠ 0. 
 
 Opposites:  Two quantities are opposite to each other if they add to zero. Particularly, 𝒂𝒂 and –𝒂𝒂 are 

opposites (also referred to as additive inverses), as 𝒂𝒂 + (−𝒂𝒂) = 𝟎𝟎. For example, the 
opposite of 3 is −3, the opposite of −3

4
 is 3

4
, the opposite of  𝑥𝑥 + 1  is  – (𝑥𝑥 + 1) = −𝑥𝑥 − 1. 

 
 Reciprocals:  Two quantities are reciprocals of each other if they multiply to one. Particularly, 𝒂𝒂 and 𝟏𝟏

𝒂𝒂
 

are reciprocals (also referred to as multiplicative inverses), since 𝒂𝒂 ∙ 𝟏𝟏
𝒂𝒂

= 𝟏𝟏. For example, 

the reciprocal of 3 is 1
3
, the reciprocal of − 3

4
 is −4

3
, the reciprocal of  𝑥𝑥 + 1  is  1

𝑥𝑥+1
. 

 
 Multiplication by 0: Any real quantity multiplied by zero becomes zero. Particularly, 𝒂𝒂 ∙ 𝟎𝟎 = 𝟎𝟎, for any real 

number 𝑎𝑎. 
  
 Zero Product:  If a product of two real numbers is zero, then at least one of these numbers must be zero. 

Particularly, for any real 𝒂𝒂 and 𝒃𝒃, if 𝒂𝒂 ∙ 𝒃𝒃 = 𝟎𝟎, then 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎. 

    For example, if 𝑥𝑥(𝑥𝑥 − 1) = 0, then either 𝑥𝑥 = 0 or 𝑥𝑥 − 1 = 0. 
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 Commutativity: The order of numbers does not change the value of a particular operation. In particular, 
addition and multiplication is commutative, since 

                            𝒂𝒂 + 𝒃𝒃 = 𝒃𝒃 + 𝒂𝒂 and 𝒂𝒂 ∙ 𝒃𝒃 = 𝒃𝒃 ∙ 𝒂𝒂, 

   for any real 𝑎𝑎 and 𝑏𝑏. For example, 5 + 3 = 3 + 5 and 5 ∙ 3 = 3 ∙ 5. 
    

   Note: Neither subtraction nor division is commutative. See a counterexample: 5 − 3 = 2 
but 3− 5 = −2, so 5− 3 ≠ 3− 5. Similarly, 5 ÷ 3 ≠ 3 ÷ 5. 

 

 Associativity: Association (grouping) of numbers does not change the value of an expression involving 
only one type of operation. In particular, addition and multiplication is associative, since 

      (𝒂𝒂 + 𝒃𝒃) + 𝒄𝒄 = 𝒂𝒂 + (𝒃𝒃 + 𝒄𝒄) and (𝒂𝒂 ∙ 𝒃𝒃) ∙ 𝒄𝒄 = 𝒂𝒂 ∙ (𝒃𝒃 ∙ 𝒄𝒄), 

   for any real 𝑎𝑎 and 𝑏𝑏. For example, (5 + 3) + 2 = 5 + (3 + 2) and (5 ∙ 3) ∙ 2 = 5 ∙ (3 ∙ 2). 

   Note: Neither subtraction nor division is associative. See a counterexample:  
   (8− 4) − 2 = 2 but 8− (4− 2) = 6, so (8 − 4) − 2 ≠ 8− (4− 2).  
   Similarly, (8 ÷ 4) ÷ 2 = 1 but 8 ÷ (4 ÷ 2) = 4, so (8 ÷ 4) ÷ 2 ≠ 8 ÷ (4 ÷ 2). 
 
 Distributivity: Multiplication can be distributed over addition or subtraction by following the rule: 

   𝒂𝒂(𝒃𝒃 ± 𝒄𝒄) = 𝒂𝒂𝒃𝒃 ± 𝒂𝒂𝒄𝒄, 

   for any real 𝑎𝑎,𝑏𝑏 and 𝑐𝑐. For example, 2(3 ± 5) = 2 ∙ 3 ± 2 ∙ 5, or 2(𝑥𝑥 ± 𝑦𝑦) = 2𝑥𝑥 ± 2𝑦𝑦. 

   Note: The reverse process of distribution is known as factoring a common factor out. 
For example, 2𝑎𝑎𝑎𝑎 + 2𝑎𝑎𝑎𝑎 = 2𝑎𝑎(𝑥𝑥 + 𝑦𝑦).  

 
 

 

 Showing Properties of Operations on Real Numbers 
   

Complete each statement to illustrate the indicated property.  

a.  𝑚𝑚𝑚𝑚 = _________  (commutativity of multiplication)  
b. 5𝑥𝑥 + (7𝑥𝑥 + 8) = ________________________  (associativity of addition) 
c. 5𝑥𝑥(2 − 𝑥𝑥) = ________________________  (distributivity of multiplication) 
d. −𝑦𝑦 + ______ = 0  (additive inverse) 
e. −6 ∙ ______ = 1  (multiplicative inverse)  
f. If 7𝑥𝑥 = 0, then ____= 0  (zero product) 

 
a.  To show that multiplication is commutative, we change the order of letters, so  
 𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑛𝑛.  

b. To show that addition is associative, we change the position of the bracket, so 
 5𝑥𝑥 + (7𝑥𝑥 + 8) = (5𝑥𝑥 + 7𝑥𝑥) + 8. 

c.  To show the distribution of multiplication over subtraction, we multiply 5𝑥𝑥 by each 
term of the bracket. So we have 5𝑥𝑥(2 − 𝑥𝑥) = 5𝑥𝑥 ∙ 2− 5𝑥𝑥 ∙ 𝑥𝑥. 

Solution           
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d. Additive inverse to – 𝑦𝑦 is its opposite, which equals to – (−𝑦𝑦) = 𝑦𝑦.  
 So we write −𝑦𝑦 + 𝑦𝑦 = 0. 

e. Multiplicative inverse of – 6 is its reciprocal, which equals to −1
6
.  

 So we write −6 ∙ �− 1
6
� = 1. 

f. By the zero product property, one of the factors, 7 or 𝑥𝑥, must equal to zero.  
 Since 7 ≠ 0, then 𝑥𝑥 must equal to zero. So, we write: If 7𝑥𝑥 = 0, then 𝑥𝑥 = 0. 

 
   

 Sign Rule: When multiplying or dividing two numbers of the same sign, the result is positive.  

   When multiplying or dividing two numbers of different signs, the result is negative. 

   This rule also applies to double signs. If the two signs are the same, they can be replaced 
by a positive sign. For example +(+3) = 3 and −(−3) = 3.  

   If the two signs are different, they can be replaced by a negative sign. For example 
−(+3) = −3 and +(−3) = −3. 

 
Observation: Since a double negative (−−) can be replaced by a positive sign (+), the opposite of an 

opposite leaves the original quantity unchanged. For example, −(−2) = 2, and generally 
−(−𝑎𝑎) = 𝑎𝑎.   

 Similarly, taking the reciprocal of a reciprocal leaves the original quantity unchanged. For 
example, 11

2
= 1 ∙ 2

1
= 2, and generally 11

𝑎𝑎
= 1 ∙ 𝑎𝑎

1
= 𝑎𝑎.   

 

Caution: Be careful not to eliminate the + operator when simplifying subtraction of a negative.  
 For example,  5 − (−5) = 5 + 5 with the + operator being essential.  

 

 Using Properties of Operations on Real Numbers 
   

Use applicable properties of real numbers to simplify each expression.  
 
a.  −−2

−3
 b. 3 + (−2) − (−7) − 11 

c.  2𝑥𝑥(−3𝑦𝑦) d. 3𝑎𝑎 − 2 − 5𝑎𝑎 + 4 

e.  −(2𝑥𝑥 − 5) f. 2(𝑥𝑥2 + 1) − 2(𝑥𝑥 − 3𝑥𝑥2) 

g.  −100𝑎𝑎𝑎𝑎
25𝑎𝑎

 h. 2𝑥𝑥−6
2

 
 
a.   The quotient of two negative numbers is positive, so −−2

−3
= −𝟐𝟐

𝟑𝟑
. 

 
Note: To determine the overall sign of an expression involving only multiplication and 
division of signed numbers, it is enough to count how many of the negative signs appear 
in the expression. An even number of negatives results in a positive value; an odd number 
of negatives leaves the answer negative.  

Solution           
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b. First, according to the sign rule, replace each double sign by a single sign. Therefore,  

  3 + (−2) − (−7) − 11 = 3 − 2 + 7 − 11. 
 
 
 
 

 
 Then, using the commutative property of addition, we collect all positive numbers, and 

all negative numbers to obtain 

     3−2 + 7�����
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

− 11 = 3 + 7���
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

−2 − 11�����
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

= 10 − 13�����
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= −𝟑𝟑.  

   
c.  Since associativity of multiplication tells us that the order of performing multiplication 

does not change the outcome, there is no need to use any brackets in expressions 
involving only multiplication. So, the expression 2𝑥𝑥(−3𝑦𝑦) can be written as 2 ∙ 𝑥𝑥 ∙
(−3) ∙ 𝑦𝑦. Here, the bracket is used only to isolate the negative number, not to prioritize 
any of the multiplications. Then, applying commutativity of multiplication to the 
middle two factors, we have 

2 ∙ 𝑥𝑥 ∙ (−3)�����
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∙ 𝑦𝑦 = 2 ∙ (−3)�����
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∙ 𝑥𝑥 ∙ 𝑦𝑦 = −𝟔𝟔𝟔𝟔𝟔𝟔 

 
d. First, use commutativity of addition to switch the two middle addends, then factor out 

the 𝑎𝑎, and finally perform additions where possible.   

3𝑎𝑎−2 − 5𝑎𝑎�����
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+ 4 = 3𝑎𝑎 − 5𝑎𝑎�����
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒂𝒂 𝑜𝑜𝑜𝑜𝑜𝑜

− 2 + 4 = (3 − 5)�����
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑎𝑎 −2 + 4�����
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= −𝟐𝟐𝟐𝟐 + 𝟐𝟐 

 
Note: In practice, to combine terms with the same variable, add their coefficients.  

   

e.  The expression −(2𝑥𝑥 − 5) represents the opposite to 2𝑥𝑥 − 5, which is −𝟐𝟐𝟐𝟐 + 𝟓𝟓. This 
expression is indeed the opposite because  

−2𝑥𝑥 + 5 + 2𝑥𝑥 − 5 = −2𝑥𝑥 +2𝑥𝑥 + 5�����
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

− 5 = 2𝑥𝑥 − 2𝑥𝑥�����
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

−5 + 5�����
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= 0 + 0 = 0. 

 
 Notice that the negative sign in front of the bracket in the expression −(2𝑥𝑥 − 5) can 

be treated as multiplication by −1. Indeed, using the distributive property of 
multiplication over subtraction and the sign rule, we achieve the same result 

−1(2𝑥𝑥 − 5) = −1 ∙ 2𝑥𝑥 + (−1)(−5) = −𝟐𝟐𝟐𝟐+ 𝟓𝟓. 
 

  
 

It is convenient to treat this expression as a sum of signed 
numbers. So, it really means 

 
but, for shorter notation, we tend not to write the plus signs. 
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Note: In practice, to release a bracket with a negative sign (or a negative factor) in front 
of it, change all the addends into opposites. For example 

−(2𝑥𝑥 − 𝑦𝑦 + 1) = −2𝑥𝑥 + 𝑦𝑦 − 1 
and   −3(2𝑥𝑥 − 𝑦𝑦 + 1) = −6𝑥𝑥 + 3𝑦𝑦 − 3 

 
 

f. To simplify 2(𝑥𝑥2 + 1) − 2(𝑥𝑥 − 3𝑥𝑥2), first, we apply the distributive property of 
multiplication and the sign rule.  

2(𝑥𝑥2 + 1) − 2(𝑥𝑥 − 3𝑥𝑥2) = 2𝑥𝑥2 + 2 − 2𝑥𝑥 + 6𝑥𝑥2 

 Then, using the commutative property of addition, we group the terms with the same 
powers of 𝑥𝑥. So, the equivalent expression is 

2𝑥𝑥2 + 6𝑥𝑥2 − 2𝑥𝑥 + 2 

 Finally, by factoring 𝑥𝑥2 out of the first two terms, we can add them to obtain 

(2 + 6)𝑥𝑥2 − 2𝑥𝑥 + 2 = 𝟖𝟖𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟐𝟐. 

  
Note: In practice, to combine terms with the same powers of a variable (or variables), 
add their coefficients. For example 

2𝑥𝑥2 −5𝑥𝑥2 +3𝑥𝑥𝑥𝑥 −𝑥𝑥𝑥𝑥  − 3 + 2 = −3𝑥𝑥2 +2𝑥𝑥𝑥𝑥 − 1. 

 
 

g.  To simplify −100𝑎𝑎𝑎𝑎
25𝑎𝑎

, we reduce the common factors of the numerator and denominator 
by following the property of the neutral element of multiplication, which is one. So, 

−
100𝑎𝑎𝑎𝑎

25𝑎𝑎
= −

25 ∙ 4𝑎𝑎𝑎𝑎
25𝑎𝑎

= −
25𝑎𝑎 ∙ 4𝑏𝑏
25𝑎𝑎 ∙ 1

= −
25𝑎𝑎
25𝑎𝑎

∙
4𝑏𝑏
1

= −1 ∙
4𝑏𝑏
1

= −𝟒𝟒𝟒𝟒. 

 This process is called canceling and can be recorded in short as 

−
100𝑎𝑎𝑎𝑎

25𝑎𝑎
= −𝟒𝟒𝟒𝟒. 

 
h. To simplify 2𝑥𝑥−6

2
, factor the numerator and then remove from the fraction the factor of 

one by canceling the common factor of 2 in the numerator and the denominator. So, 
we have 

2𝑥𝑥 − 6
2

=
2 ∙ (𝑥𝑥 − 3)

2
= 𝒙𝒙 − 𝟑𝟑. 

 
 

In the solution to Example 2d and 2f, we used an intuitive understanding of what a “term” 
is. We have also shown how to combine terms with a common variable part (like terms). 
Here is a more formal definition of a term and of like terms. 
 

4 
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 Definition 3.1 A term is a product of constants (numbers), variables, or expressions. Here are examples 
of single terms: 

  1,  𝑥𝑥,  1
2
𝑥𝑥2,  −3𝑥𝑥𝑦𝑦2,  2(𝑥𝑥 + 1),  𝑥𝑥+2

𝑥𝑥(𝑥𝑥+1)
,  𝜋𝜋√𝑥𝑥. 

  Observe that the expression 2𝑥𝑥 + 2 consists of two terms connected by addition, while the 
equivalent expression 2(𝑥𝑥 + 1) represents just one term, as it is a product of the number 2 
and the expression (𝑥𝑥 + 1). 

  Like terms are the terms that have exactly the same variable part (the same variables or 
expressions raised to the same exponents). Like terms can be combined by adding their 
coefficients (numerical part of the term). 

  For example,  5𝑥𝑥2 and −2𝑥𝑥2 are like, so they can be combined (added) to 3𝑥𝑥2, 
     (𝑥𝑥 + 1) and 3(𝑥𝑥 + 1) are like, so they can be combined to 4(𝑥𝑥 + 1), 
     but 5𝑥𝑥 and 2𝑦𝑦 are unlike, so they cannot be combined. 
      
 

 

 Combining Like Terms 
   

Simplify each expression by combining like terms.  

a.  −𝑥𝑥2 + 3𝑦𝑦2 + 𝑥𝑥 − 6 + 2𝑦𝑦2 − 𝑥𝑥 + 1  

b. 2
𝑥𝑥+1

− 5
𝑥𝑥+1

+ √𝑥𝑥 − √𝑥𝑥
2

 

 
a.   Before adding like terms, it is convenient to underline the groups of like terms by the 

same type of underlining. So, we have 

 

−𝑥𝑥2+3𝑦𝑦2 + 𝑥𝑥 − 6 +2𝑦𝑦2 − 𝑥𝑥 + 1 = −𝒙𝒙𝟐𝟐+𝟓𝟓𝒚𝒚𝟐𝟐 − 𝟓𝟓 

 
  

b. Notice that the numerical coefficients of the first two like terms in the expression  
2

𝑥𝑥 + 1
−

5
𝑥𝑥 + 1

+ √𝑥𝑥 −
√𝑥𝑥
2

 

 are 2 and −5, and of the last two like terms are 1 and −1
2
. So, by adding these 

coefficients, we obtain     

−
𝟑𝟑

𝒙𝒙 + 𝟏𝟏
+
𝟏𝟏
𝟐𝟐√

𝒙𝒙 

 

 Observe that 1
2 √𝑥𝑥 can also be written as √𝑥𝑥

2
. Similarly, − 3

𝑥𝑥+1
, −3
𝑥𝑥+1

, or −3 ∙ 1
𝑥𝑥+1

 are 
equivalent forms of the same expression. 

 

Solution           

add to zero 
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 Exponents and Roots 
 

Exponents are used as a shorter way of recording repeated multiplication by 
the same quantity. For example, to record the product 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2, we write 
25. The exponent 5 tells us how many times to multiply the base 2 by itself 
to evaluate the product, which is 32. The 
expression 25 is referred to as the 5th 
power of 2, or “2 to the 5th”. In the case of 
exponents 2 or 3, terms “squared” or 
“cubed” are often used. This is because of 
the connection to geometric figures, a 
square and a cube.  

The area of a square with sides of length 𝑎𝑎 is expressed by 𝑎𝑎2 (read: “𝑎𝑎 squared” or “the square of a”) while the 
volume of a cube with sides of length 𝑎𝑎 is expressed by 𝑎𝑎3 (read: “𝑎𝑎 cubed” or “the cube of a”). 

If a negative number is raised to a certain exponent, a bracket must be used around the base number. For example, 
if we wish to multiply −3 by itself two times, we write (−3)2, which equals (−3)(−3) = 9. The notation −32 
would indicate that only 3 is squared, so −32 = −3 ∙ 3 = −9. This is because an exponent refers only to the 
number immediately below the exponent. Unless we use a bracket, a negative sign in front of a number is not 
under the influence of the exponent. 
 

 Evaluating Exponential Expressions 
   

Evaluate each exponential expression.  

a.  −34 b. (−2)6 
c. (−2)5 d. −(−2)3 

e. �− 2
3
�
2
 f. −�−2

3
�
5
 

 
a. −34 = (−1) ∙ 3 ∙ 3 ∙ 3 ∙ 3 = −𝟖𝟖𝟖𝟖 

b. (−2)6 = (−2)(−2)(−2)(−2)(−2)(−2) = 𝟔𝟔𝟔𝟔 

c. (−2)5 = (−2)(−2)(−2)(−2)(−2) = −𝟑𝟑𝟑𝟑 

   
Observe: Negative sign in front of a power works like multiplication by −1.  

 A negative base raised to an even exponent results in a positive value. 
 A negative base raised to an odd exponent results in a negative value. 

 
d. −(−2𝑥𝑥)3  = −(−2𝑥𝑥)(−2𝑥𝑥)(−2𝑥𝑥) 

                         = −(−2)(−2)(−2)𝑥𝑥𝑥𝑥𝑥𝑥 = −(−2)3𝑥𝑥3 = −(−8)𝑥𝑥3 = 𝟖𝟖𝒙𝒙𝟑𝟑 

  e. �− 2
3
�
2

= �− 2
3
� �− 2

3
� = (−2)2

32
= 𝟒𝟒

𝟗𝟗
 

 

𝑎𝑎 

𝑎𝑎 

𝑎𝑎 𝑎𝑎 

𝑎𝑎 

Solution           



22   | Section R3   
 

Review of Operations on the Set of Real Numbers 

 

  f. −�−2
3
�
5

= −�−2
3
� �− 2

3
� �− 2

3
� �− 2

3
� �− 2

3
� = − (−2)5

35
= −−32

243
= 𝟑𝟑𝟑𝟑

𝟐𝟐𝟐𝟐𝟐𝟐
 

  
Observe: Exponents apply to every factor of the numerator and denominator of the 

base. This exponential property can be stated as 

(𝒂𝒂𝒂𝒂)𝒏𝒏 = 𝒂𝒂𝒏𝒏𝒃𝒃𝒏𝒏   and   �𝒂𝒂
𝒃𝒃
�
𝒏𝒏

= 𝒂𝒂𝒏𝒏

𝒃𝒃𝒏𝒏
 

  

 
To reverse the process of squaring, we apply a square root, denoted by the radical sign 
√     . For example, since 5 ∙ 5 = 25, then √25 = 5. Notice that (−5)(−5) = 25 as well, 
so we could also claim that √25 = −5. However, we wish to define the operation of 
taking square root in a unique way. We choose to take the positive number (called 
principal square root) as the value of the square root. Therefore √25 = 5, and generally 

√𝒙𝒙𝟐𝟐 = |𝒙𝒙|. 

Since the square of any nonzero real number is positive, the square root of a negative number is not a real number. 
For example, we can say that √−𝟏𝟏𝟏𝟏 does not exist (in the set of real numbers), as there is no real number 𝑎𝑎 that 
would satisfy the equation 𝑎𝑎2 = −16. 

 
 

 Evaluating Radical Expressions 
   

Evaluate each radical expression.  

a.  √0 b. √64 
c. −√121 d. √−100 

e. �1
9
 f. √0.49 

 
a. √0 = 𝟎𝟎, as 0 ∙ 0 = 0 

b. √64 = 𝟖𝟖, as 8 ∙ 8 = 64 

c. −√121 = −𝟏𝟏𝟏𝟏, as we copy the negative sign and 11 ∙ 11 = 121 

d. √−100 = 𝑫𝑫𝑫𝑫𝑫𝑫 (read: doesn’t exist), as no real number squared equals −100   

e. �1
9

= 𝟏𝟏
𝟑𝟑
, as 1

3
∙ 1
3

= 1
9
.  

 Notice that √1
√9

 also results in 1
3
. So, �1

9
= √1

√9
 and generally �𝒂𝒂

𝒃𝒃
= √𝒂𝒂

√𝒃𝒃
  for any 

nonnegative real numbers 𝑎𝑎 and 𝑏𝑏 ≠ 0. 

  f. √0.49 = 𝟎𝟎.𝟕𝟕, as 0.7 ∙ 0.7 = 0.49 

  

Solution           

√𝟏𝟏𝟏𝟏𝟏𝟏 
√𝟏𝟏𝟏𝟏𝟏𝟏 

√𝟏𝟏𝟏𝟏𝟏𝟏 

√𝟖𝟖𝟖𝟖 

√𝟔𝟔𝟔𝟔 

√𝟒𝟒𝟒𝟒 
√𝟑𝟑𝟑𝟑 

√𝟐𝟐𝟐𝟐 

√𝟏𝟏𝟏𝟏 

√𝟗𝟗 

√𝟒𝟒 

√𝟏𝟏 
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 Order of Operations 
 

In algebra, similarly as in arithmetic, we like to perform various operations on numbers or on variables. To record 
in what order these operations should be performed, we use grouping signs, mostly brackets, but also division 
bars, absolute value symbols, radical symbols, etc. In an expression with many grouping signs, we perform 
operations in the innermost grouping sign first. For example, the innermost grouping sign in the expression  

[4 + (3 ∙ |2 − 4|)] ÷ 2 

is the absolute value sign, then the round bracket, and finally, the square bracket. So first, perform subtraction, 
then apply the absolute value, then multiplication, addition, and finally the division. Here are the calculations: 

[4 + (3 ∙ |2 − 4|)] ÷ 2 
= [4 + (3 ∙ |−2|)] ÷ 2 

= [4 + (3 ∙ 2)] ÷ 2 
= [4 + 6] ÷ 2 

= 10 ÷ 2 
= 𝟓𝟓 

Observe that the more operations there are to perform, the more grouping signs would need to be used. To simplify 
the notation, additional rules of order of operations have been created. These rules, known as BEDMAS, allow 
for omitting some of the grouping signs, especially brackets. For example, knowing that multiplication is 
performed before addition, the expression [4 + (3 ∙ |2 − 4|)] ÷ 2 can be written as [4 + 3 ∙ |2 − 4|] ÷ 2 or  
4+3∙|2−4|

2
.  

Let’s review the BEDMAS rule. 
 
 
 
 
 

 
 
 

 BEDMAS Rule: 1. Perform operations in the innermost Bracket (or other grouping sign) first. 

   2. Then work out Exponents. 

   3. Then perform Division and Multiplication in order of their occurrence (left to right).  
   Notice that there is no priority between division and multiplication. However, both 

division and multiplication have priority before any addition or subtraction. 

   4. Finally, perform Addition and Subtraction in order of their occurrence (left to right). 
    Again, there is no priority between addition and subtraction. 
 

  

 Simplifying Arithmetic Expressions According to the Order of Operations 
   

Use the order of operations to simplify each expression.  

 +     −   ÷       ∙   

 B     E        D         M          A          S 

left to right left to right 

Brackets or other 
grouping signs 
division bar 
absolute value 
radical sign 

Exponents 
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a.  3 + 2 ∙ 6 b. 4 ∙ 6 ÷ 3 − 2 
c.  12 ÷ 4 + 2|3 − 4| d. 2 ∙ 32 − 3(−2 + 6) 

e.  √30 − 5− 2�3 + 4 ∙ (−2)�
2
 f. 3−2�−32�

3∙√4−6∙2
 

 
a. Out of the two operations, + and ∙ , multiplication is performed first. So, we have 

 3 + 2 ∙ 6 
 = 3 + 12 
 = 𝟏𝟏𝟏𝟏 

   
b. There is no priority between multiplication and division, so we perform these 

operations in the order in which they appear, from left to right. Then we subtract. 
Therefore, 

 4 ∙ 6 ÷ 3 − 2 
 = 24 ÷ 3− 2   
 = 8 − 2 
 = 𝟔𝟔 
 
c.  In this expression, we have a grouping sign (the absolute value bars), so we perform 

the subtraction inside the absolute value first. Then, we apply the absolute value and 
work out the division and multiplication before the final addition. So, we obtain  

12 ÷ 4 + 2|3 − 4| 
 = 12 ÷ 4 + 2|−1| 

= 12 ÷ 4 + 2 ∙ 1 
= 3 + 2 

 = 𝟓𝟓 
 
d. In this expression, work out the bracket first, then perform the exponent, then both 

multiplications, and finally the subtraction. Thus,  

2 ∙ 32 − 3(−2 + 6) 
 = 2 ∙ 32 − 3(4) 
 = 2 ∙ 9 − 3(4) 
 = 18 − 12 
 = 𝟔𝟔 
 

e.  The expression √30 − 5− 2�3 + 4 ∙ (−2)�
2
 contains two grouping signs, the bracket 

and the radical sign. Since these grouping signs are located at separate places (they are 
not nested), they can be worked out simultaneously. As usual, out of the operations 
inside the bracket, multiplication is done before addition.  So, we calculate 

 √30 − 5− 2�3 + 4 ∙ (−2)�
2
 

= √25 − 2�3 + (−8)�
2
 

   = 5 − 2(−5)2 

Solution           

Work out the power first, then 
multiply, and finally subtract. 
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 = 5 − 2 ∙ 25 
 = 5 − 50 
 = −𝟒𝟒𝟒𝟒 

f. To simplify the expression 3−2�−3
2�

3∙√4−6∙2
, work on the numerator and the denominator 

before performing the division. Therefore,  

3 − 2(−32)
3 ∙ √4 − 6 ∙ 2

 

 

=
3 − (−18)
3 ∙ 2 − 6 ∙ 2

 

 

=
3 + 18
6 − 12

 

 

=
21
−6

 

 

= −
𝟕𝟕
𝟐𝟐

 

  

  

 Simplifying Expressions with Nested Brackets 
   

Simplify the expression  2{1 − 5[3𝑥𝑥 + 2(4𝑥𝑥 − 1)]}. 
 
The expression 2{1 − 5[3𝑥𝑥 + 2(4𝑥𝑥 − 1)]} contains three types of brackets: the innermost 
parenthesis ( ), the middle brackets [ ], and the outermost braces { }. We start with working 
out the innermost parenthesis first, and then after collecting like terms, we proceed with 
working out consecutive brackets. So, we simplify  

2{1 − 5[3𝑥𝑥 + 2(4𝑥𝑥 − 1)]} distribute 2 over the ( ) bracket 

= 2{1 − 5[3𝑥𝑥 + 8𝑥𝑥 − 2]} collect like terms before working out the [ ] bracket 
= 2{1 − 5[11𝑥𝑥 − 2]} distribute −5 over the [ ] bracket 
= 2{1 − 55𝑥𝑥 + 10} collect like terms before working out the { } bracket 
= 2{−55𝑥𝑥 + 11} distribute 2 over the { } bracket 
= −𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟐𝟐𝟐𝟐 

 
 
 Evaluation of Algebraic Expressions 

 
An algebraic expression consists of letters, numbers, operation signs, and grouping symbols. Here are some 
examples of algebraic expressions: 

6𝑎𝑎𝑎𝑎,      𝑥𝑥2 − 𝑦𝑦2,      3(2𝑎𝑎 + 5𝑏𝑏),      
𝑥𝑥 − 3
3 − 𝑥𝑥

,      2𝜋𝜋𝜋𝜋,      
𝑑𝑑
𝑡𝑡

,      𝑃𝑃𝑃𝑃𝑃𝑃,      �𝑥𝑥2 + 𝑦𝑦2 

−32 = −9 

reduce the common 
factor of 3 

Solution           
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When a letter is used to stand for various numerical values, it is called a variable. For example, if 𝑡𝑡 represents the 
number of hours needed to drive between particular towns, then 𝑡𝑡 changes depending on the average speed used 
during the trip. So, 𝑡𝑡 is a variable. Notice however, that the distance 𝑑𝑑 between the two towns represents a constant 
number. So, even though letters in algebraic expressions usually represent variables, sometimes they may 
represent a constant value. One such constant is the letter 𝜋𝜋, which represents approximately 3.14. 

Notice that algebraic expressions do not contain any comparison signs (equality or inequality, such as =, ≠, <, 
≤, >, ≥), therefore, they are not to be solved for any variable. Algebraic expressions can only be simplified by 
implementing properties of operations (see Example 2 and 3) or evaluated for particular values of the variables. 
The evaluation process involves substituting given values for the variables and evaluating the resulting arithmetic 
expression by following the order of operations.  
 

 

 Advice: To evaluate an algebraic expression for given variables, first rewrite the expression replacing each 
variable with empty brackets and then write appropriate values inside these brackets. This will help 
to avoid possible errors of using incorrect signs or operations.  

 
 

  

 Evaluating Algebraic Expressions 
   

Evaluate each expression for 𝑎𝑎 = −2, 𝑏𝑏 = 3, and 𝑐𝑐 = 6. 

a.  𝑏𝑏2 − 4𝑎𝑎𝑎𝑎  b. 2𝑐𝑐 ÷ 3𝑎𝑎 c. �𝑎𝑎2−𝑏𝑏2�
−𝑎𝑎2+√𝑏𝑏+𝑐𝑐

 
 
a.   First, we replace each letter in the expression 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 with an empty bracket. So, 

we write  
(   )2 − 4(   )(   ). 

 Now, we fill in the brackets with the corresponding values and evaluate the resulting 
expression. So, we have 

(3)2 − 4(−2)(6) = 9 − (−48) = 9 + 48 = 𝟓𝟓𝟓𝟓. 
 
b. As above, we replace the letters with their corresponding values to obtain 

2𝑐𝑐 ÷ 3𝑎𝑎 = 2(6) ÷ 3(−2). 

 Since we work only with multiplication and division here, they are to be performed in 
order from left to right. Therefore, 

 2(6) ÷ 3(−2) = 12 ÷ 3(−2) = 4(−2) = −𝟖𝟖. 
 
 c. As above, we replace the letters with their corresponding values to obtain 

|𝑎𝑎2 − 𝑏𝑏2|
−𝑎𝑎2 + √𝑏𝑏 + 𝑐𝑐

=
|(−2)2 − (3)2|

−(−2)2 + �(3) + (6)
=

|4 − 9|
−4 + √9

=
|−5|
−4 + 3

=
5
−1

= −𝟓𝟓. 

 
 
 

Solution           
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 Equivalent Expressions 
 

Algebraic expressions that produce the same value for all allowable values of the variables 
are referred to as equivalent expressions. Notice that properties of operations allow us to 
rewrite algebraic expressions in a simpler but equivalent form. For example,  

𝒙𝒙 − 𝟑𝟑
𝟑𝟑 − 𝒙𝒙

=
𝑥𝑥 − 3

−(𝑥𝑥 − 3) = −𝟏𝟏 

or 
(𝒙𝒙 + 𝒚𝒚)(𝒙𝒙 − 𝒚𝒚) = (𝑥𝑥 + 𝑦𝑦)𝑥𝑥 − (𝑥𝑥 + 𝑦𝑦)𝑦𝑦 = 𝑥𝑥2 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥 − 𝑦𝑦2 = 𝒙𝒙𝟐𝟐 − 𝒚𝒚𝟐𝟐. 

To show that two expressions are not equivalent, it is enough to find a particular set of 
variable values for which the two expressions evaluate to a different value. For example, 

�𝑥𝑥2 + 𝑦𝑦2 ≠ 𝑥𝑥 + 𝑦𝑦 

because if 𝑥𝑥 = 1 and 𝑦𝑦 = 1 then �𝑥𝑥2 + 𝑦𝑦2 = √12 + 12 = √2 while 𝑥𝑥 + 𝑦𝑦 = 1 + 1 = 2. 
Since √2 ≠ 2 the two expressions �𝑥𝑥2 + 𝑦𝑦2 and 𝑥𝑥 + 𝑦𝑦 are not equivalent. 
  

 Determining Whether a Pair of Expressions is Equivalent 
   

Determine whether the given expressions are equivalent. 

a.  (𝑎𝑎 + 𝑏𝑏)2 and 𝑎𝑎2 + 𝑏𝑏2 b. 𝑥𝑥8

𝑥𝑥4
 and 𝑥𝑥4 

 
a.   Suppose 𝑎𝑎 = 1 and 𝑏𝑏 = 1. Then  

(𝑎𝑎 + 𝑏𝑏)2 = (1 + 1)2 = 22 = 4 
 but  

𝑎𝑎2 + 𝑏𝑏2 = 12 + 12 = 2. 

 So the expressions (𝑎𝑎 + 𝑏𝑏)2 and 𝑎𝑎2 + 𝑏𝑏2 are not equivalent. 

Using the distributive property and commutativity of multiplication, check on your own 
that 
                                                     (𝑎𝑎 + 𝑏𝑏)2 = 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2. 
 
b. Using properties of exponents and then removing a factor of one, we show that  

𝑥𝑥8

𝑥𝑥4
=
𝑥𝑥4 ∙ 𝑥𝑥4

𝑥𝑥4
= 𝑥𝑥4. 

So the two expressions are indeed equivalent. 

 
 Review of Operations on Fractions 
 

A large part of algebra deals with performing operations on algebraic expressions by generalising the ways that 
these operations are performed on real numbers, particularly, on common fractions. Since operations on fractions 

Solution           
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are considered to be one of the most challenging topics in arithmetic, it is a good idea to review the rules to follow 
when performing these operations before we move on to other topics of algebra. 

 

 Operations on Fractions: 

 Simplifying To simplify a fraction to its lowest terms, remove the greatest common factor (GCF) of 
the numerator and denominator. For example,  48

64
= 3∙16

4∙16
= 3

4
, and generally 𝒂𝒂𝒌𝒌

𝒃𝒃𝒌𝒌
= 𝒂𝒂

𝒃𝒃
. 

   This process is called reducing or canceling.  

   Note that the reduction can be performed several times, if needed. In the above example, if 
we didn’t notice that 16 is the greatest common factor for 48 and 64, we could reduce the 
fraction by dividing the numerator and denominator by any common factor (2, or 4, or 8) 
first, and then repeat the reduction process until there is no common factors (other than 1) 
anymore. For example,   

48
64

 =  
24
32

 =  
6
8

 =  
𝟑𝟑
𝟒𝟒

. 

 
 

 Multiplying To multiply fractions, we multiply their numerators and denominators. So generally, 

𝒂𝒂
𝒃𝒃
∙
𝒄𝒄
𝒅𝒅

=
𝒂𝒂𝒂𝒂
𝒃𝒃𝒃𝒃

. 

   However, before performing multiplication of numerators and denominators, it is a good 
idea to reduce first. This way, we work with smaller numbers, which makes the calculations 
easier. For example,   

18
15

∙
25
14

=
18 ∙ 25
15 ∙ 14

=
18 ∙ 5
3 ∙ 14

=
6 ∙ 5

1 ∙ 14
=

3 ∙ 5
1 ∙ 7

=
𝟏𝟏𝟏𝟏
𝟕𝟕

. 

 

  
 Dividing To divide fractions, we multiply the dividend (the first fraction) by the reciprocal of the 

divisor (the second fraction). So generally,  

𝒂𝒂
𝒃𝒃

÷
𝒄𝒄
𝒅𝒅

=
𝒂𝒂
𝒃𝒃
∙
𝒅𝒅
𝒄𝒄

=
𝒂𝒂𝒂𝒂
𝒃𝒃𝒃𝒃

. 

 

   For example,   

8
15

÷
4
5

=
8

15
∙

5
4

=
2 ∙ 1
3 ∙ 1

=
𝟐𝟐
𝟑𝟑

. 

 

 Adding or  To add or subtract fractions, follow the steps: 
 Subtracting  1. Find the Lowest Common Denominator (LCD). 
   2. Extend each fraction to higher terms to obtain the desired common denominator. 
   3. Add or subtract the numerators, keeping the common denominator. 
   4. Simplify the resulting fraction, if possible. 
 

÷ by 3 ÷ by 2 ÷ by 5 

÷ by 2 ÷ by 2 ÷ by 4 

∙ by reciprocal 

÷ by 5 

÷ by 4 
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   For example, to evaluate 5

6
+ 3

4
− 4

15
, first we find the LCD for denominators 6, 4, and 15. 

We can either guess that 60 is the least common multiple of 6, 4, and 15, or we can use the 
following method of finding LCD: 

     
  𝟐𝟐 
∙ 𝟑𝟑 
∙ 

  𝟔𝟔
  3

     𝟏𝟏   

  𝟒𝟒
  2
 ∙ 𝟐𝟐

𝟏𝟏𝟏𝟏              
15              
∙ 𝟓𝟓 = 𝟔𝟔𝟔𝟔

 

    
   Then, we extend the fractions so that they share the same denominator of 60, and finally 

perform the operations in the numerator. Therefore, 

5
6 +

3
4 −

4
5 =

5 ∙ 10
6 ∙ 10 +

3 ∙ 15
4 ∙ 15 −

4 ∙ 12
5 ∙ 12���������������

𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,   𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛′𝑡𝑡 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

=
5 ∙ 10 + 3 ∙ 15 − 4 ∙ 12

60 =
50 + 45− 48

60 =
𝟒𝟒𝟒𝟒
𝟔𝟔𝟔𝟔. 

 

 

  

 Evaluating Fractional Expressions 
   

Simplify each expression. 

a.  −2
3
− �− 5

12
�  b. −3 �3

2
+ 5

6
÷ �− 3

8
��  

 
a.   After replacing the double negative by a positive sign, we add the two fractions, 

using 12 as the lowest common denominator. So, we obtain  

−
2
3 − �−

5
12� = −

2
3 +

5
12 =

−2 ∙ 4 + 5
12 =

−3
12 = −

𝟏𝟏
𝟒𝟒. 

 

b. Following the order of operations, we calculate 

−3 �
3
2 +

5
6 ÷ �−

3
8�� 

= −3 �
3
2 −

5  
63
∙

84

3  
� 

= −3 �
3
2−

20
9 � 

= −3 �
27− 40

18 � 

= −3 �
−13
18 � 

=
𝟏𝟏𝟏𝟏
𝟔𝟔   or equivalently  𝟐𝟐

𝟏𝟏
𝟔𝟔. 

  
 

 

Solution           

- divide by a common factor of at least two numbers; for example, by 2 
- write the quotients in the line below; 15 is not divisible by 2, so just copy it down 
- keep dividing by common factors until all numbers become relatively prime  
- the LCD is the product of all numbers listed in the letter L, so it is 60 

First, perform the division in the bracket by converting it to a multiplication by 
the reciprocal. The quotient becomes negative. 

 
Reduce, before multiplying. 
 

 

 

Extend both fractions to higher terms using the common denominator of 18. 

 

Perform subtraction. 

 
 
Reduce before multiplying. The product becomes positive. 
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 R.3  Exercises  

 
True or False?  

1. The set of integers is closed under multiplication. 

2.  The set of natural numbers is closed under subtraction. 

3.  The set of real numbers different than zero is closed under division. 

4.  According to the BEDMAS rule, division should be performed before multiplication. 

5. For any real number √𝑥𝑥2 = 𝑥𝑥. 

6. Square root of a negative number is not a real number. 

7. If the value of a square root exists, it is positive. 

8. −𝑥𝑥3 = (−𝑥𝑥)3  9. −𝑥𝑥2 = (−𝑥𝑥)2 
 
 Complete each statement to illustrate the indicated property. 

10. 𝑥𝑥 + (−𝑦𝑦) = ____________ , commutative property of addition   

11. (7 ∙ 5) ∙ 2 = ______________ , associative property of multiplication 

12. (3 + 8𝑥𝑥) ∙ 2 = __________________ , distributive property of multiplication over addition  

13. 𝑎𝑎 + ______ = 0 , additive inverse 

 14. −𝑎𝑎
𝑏𝑏
∙ _______ = 1 , multiplicative inverse  

 15. 3𝑥𝑥
4𝑦𝑦
∙ ______ = 3𝑥𝑥

4𝑦𝑦
 , multiplicative identity 

 16. ______ + (−𝑎𝑎) = −𝑎𝑎 , additive identity 

 17. (2𝑥𝑥 − 7) ∙ _____ = 0 , multiplication by zero 

 18. If  (𝑥𝑥 + 5)(𝑥𝑥 − 1) = 0,  then ________= 0 or ________= 0 , zero product property 
 
Perform operations. 

19. −2
5

+ 3
4
     20. 5

6
− 2

9
   21. 5

8
∙ �− 2

3
� ∙ 18

15
 

22. −3 �− 5
9
�      23. −3

4
(8𝑥𝑥)   24. 15

16
÷ �− 9

12
� 

 
Use order of operations to evaluate each expression. 

25. 64 ÷ (−4) ÷ 2    26. 3 + 3 ∙ 5   27. 8 − 6(5 − 2) 

28. 20 + 43 ÷ (−8)     29. 6�9 − 3√9− 5�  30. −25 − 8 ÷ 4 − (−2) 
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31. −5
6

+ �− 7
4
� ÷ 2    32. �− 3

2
� ∙ 1

6
− 2

5
   33. −3

2
÷ �− 4

9
� − 5

4
∙ 2
3
 

34. −3 �− 4
9
� − 1

4
÷ 3

5
    35. 2 − 3|3 − 4 ∙ 6|  36. 3|5−7|−6∙4

5∙6−2|4−1|
 

 
Simplify each expression.   

37. −(𝑥𝑥 − 𝑦𝑦)  38. −2(3𝑎𝑎 − 5𝑏𝑏)   39. 2
3

(24𝑥𝑥 + 12𝑦𝑦 − 15) 

40. 3
4

(16𝑎𝑎 − 28𝑏𝑏 + 12) 41. 5𝑥𝑥 − 8𝑥𝑥 + 2𝑥𝑥   42. 3𝑎𝑎 + 4𝑏𝑏 − 5𝑎𝑎 + 7𝑏𝑏 

43. 5𝑥𝑥 − 4𝑥𝑥2 + 7𝑥𝑥 − 9𝑥𝑥2 44. 8√2 − 5√2 + 1
𝑥𝑥

+ 3
𝑥𝑥
 45. 2 + 3√𝑥𝑥 − 6 − √𝑥𝑥 

46. 𝑎𝑎−𝑏𝑏
𝑏𝑏−𝑎𝑎

  47.  2(𝑥𝑥−3)
3−𝑥𝑥

   48. −100𝑎𝑎𝑎𝑎
75𝑎𝑎

 

49. −(5𝑥𝑥)2  50. �− 2
3
𝑎𝑎�

2
   51. 5𝑎𝑎 − (4𝑎𝑎 − 7) 

52. 6𝑥𝑥 + 4− 3(9 − 2𝑥𝑥)   53.  5𝑥𝑥 − 4(2𝑥𝑥 − 3) − 7   

54. 8𝑥𝑥 − (−4𝑦𝑦 + 7) + (9𝑥𝑥 − 1)   55. 6𝑎𝑎 − [4 − 3(9𝑎𝑎 − 2)]  

56. 5{𝑥𝑥 + 3[4 − 5(2𝑥𝑥 − 3) − 7]}   57. −2{2 + 3[4𝑥𝑥 − 3(5𝑥𝑥 + 1)]} 

58. 4{[5(𝑥𝑥 − 3) + 52] − 3[2(𝑥𝑥 + 5) − 72]} 59. 3{[6(𝑥𝑥 + 4) − 33] − 2[5(𝑥𝑥 − 8) − 82]} 
 

Evaluate each algebraic expression for 𝑎𝑎 = −2, 𝑏𝑏 = 3, and 𝑐𝑐 = 2.  

60. 𝑏𝑏2 − 𝑎𝑎2  61. 6𝑐𝑐 ÷ 3𝑎𝑎   62. 𝑐𝑐−𝑎𝑎
𝑐𝑐−𝑏𝑏

 

63. 𝑏𝑏2 − 3(𝑎𝑎 − 𝑏𝑏) 64. −𝑏𝑏+√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

   65. 𝑐𝑐 �𝑎𝑎
𝑏𝑏
�

|𝑎𝑎|
 

 
Determine whether each pair of expressions is equivalent.  

66. 𝑥𝑥3 ∙ 𝑥𝑥2  and   𝑥𝑥5     67. 𝑎𝑎2 − 𝑏𝑏2  and   (𝑎𝑎 − 𝑏𝑏)2 

 68. √𝑥𝑥2  and   𝑥𝑥      69. (𝑥𝑥3)2  and   𝑥𝑥5 
 

Use the distributive property to calculate each value mentally.  

70. 96 ∙ 18 + 4 ∙ 18         71. 29 ∙ 70 + 29 ∙ 30     

72. 57 ∙ 3
5
− 7 ∙ 3

5
      73. 8

5
∙ 17 + 8

5
∙ 13       

 
 Insert one pair of parentheses to make the statement true. 

 74. 2 ∙ 3 + 6 ÷ 5 − 3 = 9     75. 9 ∙ 5 + 2 − 8 ∙ 3 + 1 = 22   
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