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Q3 Properties and Graphs of Quadratic Functions   

In this section, we explore an alternative way of graphing quadratic functions. It turns out 
that if a quadratic function is given in vertex form, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, its graph can 
be obtained by transforming the shape of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, by applying a 
vertical dilation by the factor of 𝑎𝑎, as well as a horizontal translation by 𝑝𝑝 units and 
vertical translation by 𝑞𝑞 units. This approach makes the graphing process easier than when 
using a table of values.  

In addition, the vertex form allows us to identify the main characteristics of the 
corresponding graph such as shape, opening, vertex, and axis of symmetry. Then, the 
additional properties of a quadratic function, such as domain and range, or where the 
function increases or decreases can be determined by observing the obtained graph.  
 

 

 Properties and Graph of the Basic Parabola 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 
 

Recall the shape of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, as discussed in Section P4. 

  

 

 

 

 
 

Observe the relations between the points listed in the table above. If we start with plotting 
the vertex (𝟎𝟎,𝟎𝟎), then the next pair of points, (𝟏𝟏,𝟏𝟏) and (−𝟏𝟏,𝟏𝟏), is plotted 1 unit across 
from the vertex (both ways) and 1 unit up. The following pair, (𝟐𝟐,𝟒𝟒) and (−𝟐𝟐,𝟒𝟒), is plotted 
2 units across from the vertex and 4 units up. The graph of the parabola is obtained by 
connecting these 5 main points by a curve, as illustrated in Figure 3.1. 

The graph of this parabola is symmetric in the 𝑦𝑦-axis, so the equation of the axis of 
symmetry is 𝒙𝒙 = 𝟎𝟎.  

The domain of the basic parabola is the set of all real numbers, ℝ, as 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 is a 
polynomial, and polynomials can be evaluated for any real 𝑥𝑥-value.  

The arms of the parabola are directed upwards, which means that the vertex 
is the lowest point of the graph. Hence, the range of the basic parabola 
function, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, is the interval [𝟎𝟎,∞), and the minimum value of the 
function is 0.   

Suppose a point ‘lives’ on the graph and travels from left to right. Observe 
that in the case of the basic parabola, if 𝑥𝑥-coordinates of the ‘travelling’ point 
are smaller than 0, the point slides down along the graph. Similarly, if 𝑥𝑥-
coordinates are larger than 0, the point climbs up the graph. (See Figure 3.2) 
To describe this property in mathematical language, we say that the 
function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 decreases in the interval (−∞, 0] and increases in the 
interval [0,∞).  
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 Properties and Graphs of a Dilated Parabola 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒂𝒂𝟐𝟐  
 
Figure 3.3 shows graphs of several functions of the form 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2. Observe 
how the shapes of these parabolas change for various values of 𝑎𝑎 in comparison 
to the shape of the basic parabola 𝑦𝑦 = 𝑥𝑥2.  

The common point for all of these parabolas is the vertex (0,0). Additional 
points, essential for graphing such parabolas, are shown in the table below.  

 

 

 

 

 
 

For example, to graph 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2, it is convenient to plot the vertex first, 
which is at the point (𝟎𝟎,𝟎𝟎). Then, we may move the pen 1 unit across from the 
vertex (either way) and 3 units up to plot the points (−1,3) and (1,3). If the 
grid allows, we might want to plot the next two points, (−2,12) and (2,12), by 
moving the pen 2 units across from the vertex and 4 ∙ 3 = 𝟏𝟏𝟏𝟏 units up, as in 
Figure 3.4. 

Notice that the obtained shape (in solid green) is narrower than the shape of 
the basic parabola (in dashed orange). However, similarly as in the case of the 
basic parabola, the shape of the dilated function is still symmetrical about the 
𝒚𝒚-axis, 𝒙𝒙 = 𝟎𝟎. 

Now, suppose we want to graph the function 𝑓𝑓(𝑥𝑥) = − 1
2
𝑥𝑥2. As before, we may 

start by plotting the vertex at (0,0). Then, we move the pen 1 unit across from 
the vertex (either way) and half a unit down to plot the points �−1,−1

2
� and 

�1,−1
2
�, as in Figure 3.5. The next pair of points can be plotted by moving the 

pen 2 units across from the vertex and 𝟐𝟐 units down, as the ordered pairs 
(−2,−2) and (2,−2) satisfy the equation  𝑓𝑓(𝑥𝑥) = −1

2
𝑥𝑥2.   

Notice that this time the obtained shape (in solid brown) is wider than the shape 
of the basic parabola (in dashed orange). Also, as a result of the negative 𝒂𝒂-
value, the parabola opens down, and the range of this function is (−∞,𝟎𝟎].  
 

Generally, the shape of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 is  
- narrower than the shape of the basic parabola, if |𝒂𝒂| > 𝟏𝟏; 
- wider than the shape of the basic parabola, if 𝟎𝟎 < |𝒂𝒂| < 𝟏𝟏; and 
- the same as the shape of the basic parabola, 𝑦𝑦 = 𝑥𝑥2, if |𝒂𝒂| = 𝟏𝟏. 

The parabola opens up, for 𝒂𝒂 > 𝟎𝟎, and down, for 𝒂𝒂 < 𝟎𝟎.  
Thus the vertex becomes the lowest point of the graph, if 𝒂𝒂 > 𝟎𝟎, and the 
highest point of the graph, if 𝒂𝒂 < 𝟎𝟎. 

The range of 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 is [𝟎𝟎,∞), if  𝒂𝒂 > 𝟎𝟎, and (−∞,𝟎𝟎], if  𝒂𝒂 < 𝟎𝟎. 
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Figure 3.3 

𝟐𝟐𝟐𝟐𝟐𝟐 

𝑥𝑥 

𝒙𝒙𝟐𝟐 

2 

−2 

1 across, 
2 up 

axis of 
symmetry 

  1 across, 
 12 up 

𝟏𝟏
𝟐𝟐
𝒙𝒙𝟐𝟐 

  1 across, 
 1 down 

−𝒙𝒙𝟐𝟐 
vertex 

1 unit apart 
from zero, 
a units up 

2 units apart 
from zero, 
4a units up 

Figure 3.4 

Figure 3.5 

𝑥𝑥 

𝒙𝒙𝟐𝟐 

−2 

−2 
2 across, 
2 down 

  1 across, 
 12 down 

𝒇𝒇(𝒙𝒙) = −𝟏𝟏
𝟐𝟐𝒙𝒙

𝟐𝟐 

𝑥𝑥 

𝒙𝒙𝟐𝟐 

3 

−1 

2 across, 
12 up 

  1 across, 
 3 up 

𝒇𝒇(𝒙𝒙) = 𝟑𝟑𝟑𝟑𝟐𝟐 



Section Q3 |   367   
 

Properties and Graphs of Quadratic Functions 
 

The axis of symmetry of the dilated parabola 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 remains the same as 
that of the basic parabola, which is 𝒙𝒙 = 𝟎𝟎. 
 

 

 Graphing a Dilated Parabola and Describing Its Shape, Opening, and Range 
   

For each quadratic function, describe its shape and opening. Then graph it and determine 
its range. 

a. 𝑓𝑓(𝑥𝑥) = 1
4
𝑥𝑥2   b. 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2  

 
a. Since the leading coefficient of the function 𝑓𝑓(𝑥𝑥) = 1

4
𝑥𝑥2 is positive, the parabola 

opens up. Also, since 0 < 1
4

< 1, we expect the shape of the parabola to be 
wider than that of the basic parabola.  

To graph 𝑓𝑓(𝑥𝑥) = 1
4
𝑥𝑥2, first we plot the vertex at (0,0) and then points �±1, 1

4
� 

and �±2, 1
4
∙ 4� = (±2,1). After connecting these points with a curve, we 

obtain the graph of the parabola.  

By projecting the graph onto the 𝑦𝑦-axis, we observe that the range of the 
function is [0,∞). 
 

b. Since the leading coefficient of the function 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2 is negative, the parabola 
opens down. Also, since |−2| > 1, we expect the 
shape of the parabola to be narrower than that of 
the basic parabola.  

 To graph  𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2, first we plot the vertex at 
(0,0) and then points (±1,−2) and (±2,−2 ∙ 4) =
(±2,−8). After connecting these points with a 
curve, we obtain the graph of the parabola.   

 By projecting the graph onto the 𝑦𝑦-axis, we observe 
that the range of the function is (−∞, 0]. 

 

 Properties and Graphs of the Basic Parabola with Shifts  
 

Suppose we would like to graph the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2. We could do this via a 
table of values, but there is an easier way if we already know the shape of the basic 
parabola 𝑦𝑦 = 𝑥𝑥2. 

Observe that for every 𝑥𝑥-value, the value of 𝑥𝑥2 − 2 is obtained by subtracting 2 from 
the value of 𝑥𝑥2. So, to graph 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2, it is enough to move each point (𝑥𝑥, 𝑥𝑥2) 
of the basic parabola by two units down, as indicated in Figure 3.6.  

The shift of 𝑦𝑦-values by 2 units down causes the range of the new function, 𝑓𝑓(𝑥𝑥) =
𝑥𝑥2 − 2, to become [−𝟐𝟐,∞). Observe that this vertical shift also changes the 
minimum value of this function, from 0 to −2.  

Figure 3.6 
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The axis of symmetry remains unchanged, and it is 𝒙𝒙 = 𝟎𝟎.  
 
 

 

Generally, the graph of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝒒𝒒 can be 
obtained by 

- shifting the graph of the basic parabola 𝒒𝒒 steps up, if 𝒒𝒒 > 𝟎𝟎; 
- shifting the graph of the basic parabola |𝒒𝒒| steps down, if 𝒒𝒒 < 𝟎𝟎. 
 
The vertex of such parabola is at (𝟎𝟎,𝒒𝒒). The range of it is [𝒒𝒒,∞).  
The minimum (lowest) value of the function is 𝒒𝒒. 
The axis of symmetry is 𝒙𝒙 = 𝟎𝟎. 

 

 
Now, suppose we wish to graph the function 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2. We can graph it by 
joining the points calculated in the table below. 
 

Observe that the parabola 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 assumes its 
lowest value at the vertex. The lowest value of the perfect 
square (𝑥𝑥 − 2)2 is zero, and it is attained at the 𝑥𝑥-value of 2. 
Thus, the vertex of this parabola is (2,0).  

Notice that the vertex (𝟐𝟐,𝟎𝟎) of 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 is 
positioned 2 units to the right from the vertex (0,0) of the 
basic parabola.  

This suggests that the graph of the function 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 can be obtained without the 
aid of a table of values. It is enough to shift the graph of the basic parabola 2 units to the 
right, as shown in Figure 3.7.  

Observe that the horizontal shift does not influence the range of the new parabola 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 − 2)2. It is still [𝟎𝟎,∞), the same as for the basic parabola. However, the axis of 
symmetry has changed to 𝒙𝒙 = 𝟐𝟐. 

 
 

Generally, the graph of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝒑𝒑)𝟐𝟐 can be obtained 
by 

- shifting the graph of the basic parabola 𝒑𝒑 steps to the right, if 𝒑𝒑 > 𝟎𝟎; 
- shifting the graph of the basic parabola |𝒑𝒑| steps to the left, if 𝒑𝒑 < 𝟎𝟎. 

The vertex of such a parabola is at (𝒑𝒑,𝟎𝟎). The range of it is [𝟎𝟎,∞). 

The minimum value of the function is 𝟎𝟎. 

The axis of symmetry is 𝒙𝒙 = 𝒑𝒑. 
 

 
 

 Graphing Parabolas and Observing Transformations of the Basic Parabola 
   

Graph each parabola by plotting its vertex and following the appropriate opening and shape. 
Then describe transformations of the basic parabola that would lead to the obtained graph. 
Finally, state the range and the equation of the axis of symmetry. 

a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 3)2   b. 𝑔𝑔(𝑥𝑥) = −𝑥𝑥2 + 1 

𝒙𝒙 (𝒙𝒙 − 𝟐𝟐)𝟐𝟐 
𝟎𝟎 𝟒𝟒 
𝟏𝟏 𝟏𝟏 
𝟐𝟐 𝟎𝟎 
𝟑𝟑 𝟏𝟏 
𝟒𝟒 𝟒𝟒 

Figure 3.7 
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a. The perfect square (𝑥𝑥 + 3)2 attains its lowest value at 
𝑥𝑥 = −3. So, the vertex of the parabola 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 + 3)2 is (−𝟑𝟑,𝟎𝟎). Since the leading coefficient is 1, 
the parabola takes the shape of 𝑦𝑦 = 𝑥𝑥2, and its arms 
open up.  

 The graph of the function 𝑓𝑓 can be obtained by shifting 
the graph of the basic parabola 3 units to the left, as 
shown in Figure 3.8.  

 The range of function 𝑓𝑓 is [𝟎𝟎,∞), and the equation of 
the axis of symmetry is 𝒙𝒙 = −𝟑𝟑. 

 
b. The expression  −𝑥𝑥2 + 1  attains its highest value at 

𝑥𝑥 = 0. So, the vertex of the parabola 𝑔𝑔(𝑥𝑥) = −𝑥𝑥2 + 1 
is (𝟎𝟎,𝟏𝟏). Since the leading coefficient is −1, the 
parabola takes the shape of 𝑦𝑦 = 𝑥𝑥2, but its arms open 
down.  

 The graph of the function 𝑔𝑔 can be obtained by:  

-  first, flipping the graph of the basic parabola over 
the 𝒙𝒙-axis, and then  

- shifting the graph of 𝑦𝑦 = −𝑥𝑥2 1 unit up, as shown 
in Figure 3.9.  

 The range of the function 𝑔𝑔 is (−∞,𝟏𝟏], and the equation of the axis of symmetry is 
𝒙𝒙 = 𝟎𝟎. 

 
 

Note: The order of transformations in the above example is essential. The reader is 
encouraged to check that shifting the graph of 𝑦𝑦 = 𝑥𝑥2 by 1 unit up first and 
then flipping it over the 𝑥𝑥-axis results in a different graph than the one in 
Figure 3.9. 

  

 

 
 Properties and Graphs of Quadratic Functions Given in the Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 
 

So far, we have discussed properties and graphs of quadratic functions that can be obtained 
from the graph of the basic parabola by applying mainly a single transformation. These 
transformations were: dilations (including flips over the 𝑥𝑥-axis), and horizontal and vertical 
shifts. Sometimes, however, we need to apply more than one transformation. We have 
already encountered such a situation in Example 2b, where a flip and a vertical shift were 
applied. Now, we will look at properties and graphs of any function of the form 𝒇𝒇(𝒙𝒙) =
𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, referred to as the vertex form of a quadratic function. 

Solution           

Figure 3.8 
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Suppose we wish to graph 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 + 1)2 − 3. This can be accomplished by connecting 
the points calculated in a table of values, such as the one below, or by observing the 

coordinates of the vertex and following the shape of the graph 
of 𝑦𝑦 = 2𝑥𝑥2. Notice that the vertex of our parabola is at 
(−1,−3).  This information can be taken directly from the 

equation 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 + 1)2 − 3 = 2�𝑥𝑥 − (−𝟏𝟏)�
2
− 𝟑𝟑, 

 
 

without the aid of a table of values.  

The rest of the points follow the pattern of the shape for 
the 𝑦𝑦 = 2𝑥𝑥2 parabola: 1 across, 2 up; 2 across, 4 ∙ 2 =
8 up. So, we connect the points as in Figure 3.10.  

Notice that the graph of function 𝑓𝑓 could also be 
obtained as a result of translating the graph of 𝑦𝑦 = 2𝑥𝑥2 
by 1 unit left and 3 units down, as indicated in Figure 
3.10 by the blue vectors. 

Here are the main properties of the graph of function 𝑓𝑓: 
- It has a shape of 𝑦𝑦 = 𝟐𝟐𝒙𝒙𝟐𝟐; 
- It is a parabola that opens up; 
- It has a vertex at (−𝟏𝟏,−𝟑𝟑); 
- It is symmetrical about the line 𝒙𝒙 = −𝟏𝟏; 
- Its minimum value is –𝟑𝟑, and this minimum is attained at 𝑥𝑥 = −1;  
- Its domain is the set of all real numbers, and its range is the interval [−𝟑𝟑,∞); 
- It decreases for 𝑥𝑥 ∈ (−∞,−𝟏𝟏] and increases for 𝑥𝑥 ∈ [−𝟏𝟏,  ∞).  
 
The above discussion of properties and graphs of a quadratic function given in vertex form 
leads us to the following general observations: 
 
Characteristics of Quadratic Functions Given in Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒  
 

1.  The graph of a quadratic function given in vertex form 

      𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, where 𝒂𝒂 ≠ 𝟎𝟎, 

 is a parabola with vertex (𝒑𝒑,𝒒𝒒) and axis of symmetry 𝒙𝒙 = 𝒑𝒑. 

2.  The graph opens up if 𝒂𝒂 is positive and down if 𝒂𝒂 is negative. 

3. If 𝒂𝒂 > 𝟎𝟎, 𝒒𝒒 is the minimum value. If 𝒂𝒂 < 𝟎𝟎, 𝒒𝒒 is the maximum value. 

3.  The graph is narrower than that of 𝑦𝑦 = 𝑥𝑥2 if  |𝒂𝒂| > 𝟏𝟏. 
  The graph is wider than that of 𝑦𝑦 = 𝑥𝑥2 if  𝟎𝟎 < |𝒂𝒂| < 𝟏𝟏. 

4.  The domain of function 𝑓𝑓 is the set of real numbers, ℝ.  
 The range of function 𝑓𝑓 is [𝒒𝒒,∞) if 𝒂𝒂 is positive and (−∞,𝒒𝒒] if 𝒂𝒂 is negative. 
  

𝒙𝒙 𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 
−𝟑𝟑 𝟓𝟓 
−𝟐𝟐 −𝟏𝟏 
−𝟏𝟏 −𝟑𝟑 
𝟎𝟎 −𝟏𝟏 
𝟏𝟏 𝟓𝟓 

vertex 
1 unit apart 
from zero, 
2 units up opposite to the 

number in the bracket 
the same last 

number  

Figure 3.10 

𝑥𝑥 

𝟐𝟐𝟐𝟐𝟐𝟐 
5 

−1 

translation 
1 left,  
3 down 

  1 across, 
 2 up 

      𝒇𝒇(𝒙𝒙) = 𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 

2 across, 
8 up 

−3 
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 Identifying Properties and Graphing Quadratic Functions Given in Vertex Form 
𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 

   
For each function, identify its vertex, opening, axis of symmetry, and shape. Then graph 
the function and state its domain and range. Finally, describe transformations of the basic 
parabola that would lead to the obtained graph.  

a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2 + 2  b. 𝑔𝑔(𝑥𝑥) = −1
2

(𝑥𝑥 + 1)2 + 3 
 
a. The vertex of the parabola 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2 + 2 is 

(𝟑𝟑,𝟐𝟐); the graph opens up, and the equation of the axis 
of symmetry is 𝒙𝒙 = 𝟑𝟑. To graph this function, we can 
plot the vertex first and then follow the shape of the 
basic parabola 𝑦𝑦 = 𝒙𝒙𝟐𝟐. 

The domain of function 𝑓𝑓 is ℝ, and the range is [𝟐𝟐,∞). 

The graph of 𝑓𝑓 can be obtained by shifting the graph of 
the basic parabola 3 units to the right and 2 units up. 
 

b. The vertex of the parabola 𝑔𝑔(𝑥𝑥) = −1
2

(𝑥𝑥 + 1)2 + 3 is 
(−𝟏𝟏,𝟑𝟑); the graph opens down, and the equation of the axis of symmetry is 𝒙𝒙 =
−𝟏𝟏. To graph this function, we can plot the vertex first and then follow the shape 
of the parabola 𝑦𝑦 = −1

2
𝒙𝒙𝟐𝟐. This means that starting from the vertex, we move the 

pen one unit across (both ways) and drop half a unit to plot the next two points, 
�0, 5

2
� and symmetrically �−2, 5

2
�. To plot the following two points, again, we 

start from the vertex and move our pen two units across and 2 units down (as −1
2
∙

4 = −2). So, the next two points are (1,1) and symmetrically (−4,1), as indicated 
in Figure 3.11. 

The domain of function 𝑔𝑔 is ℝ, and the range is (−∞,𝟑𝟑]. 
 
The graph of 𝑔𝑔 can be obtained  from the graph of the basic parabola in two steps:  
1. Dilate the basic parabola by multiplying its 𝑦𝑦-values by the factor of −1

2
.  

2. Shift the graph of the dilated parabola 𝑦𝑦 = − 1
2
𝒙𝒙𝟐𝟐, 1 unit to the left and 3 units 

up, as indicated in Figure 3.11. 

 
Aside from the main properties such as vertex, opening and shape, we are often interested 
in 𝑥𝑥- and 𝑦𝑦-intercepts of the given parabola. The next example illustrates how to find these 
intercepts from the vertex form of a parabola. 

 

 Finding the Intercepts from the Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 
   

Find the 𝑥𝑥- and 𝑦𝑦-intercepts of each parabola. 

Solution           

Figure 3.11 

𝑥𝑥 

𝑦𝑦 = 𝑥𝑥2 

2 

3 

               𝒇𝒇(𝒙𝒙) = (𝒙𝒙+ 𝟑𝟑)𝟐𝟐 

translation 
3 right, 2 up 

 

𝑥𝑥 

𝒚𝒚 = 𝒙𝒙𝟐𝟐 

−1 

𝒈𝒈(𝒙𝒙) = −𝟏𝟏
𝟐𝟐
(𝒙𝒙+ 𝟏𝟏)𝟐𝟐 + 𝟑𝟑 

 

 

 

𝒚𝒚 = −𝟏𝟏
𝟐𝟐
𝒙𝒙𝟐𝟐 

translation 
1 left, 3 up 

3 
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a. 𝑓𝑓(𝑥𝑥) = 1
4

(𝑥𝑥 − 2)2 − 2  b. 𝑔𝑔(𝑥𝑥) = −2(𝑥𝑥 + 1)2 − 3  
 
a. To find the 𝑦𝑦-intercept, we evaluate the function at zero. Since  

𝑓𝑓(0) =
1
4

(−2)2 − 2 = 1 − 2 = −1, 

 then the 𝑦𝑦-intercept is (𝟎𝟎,−𝟏𝟏). 

 To find 𝑥𝑥-intercepts, we set 𝑓𝑓(𝑥𝑥) = 0. So, we need to solve the equation 

1
4

(𝑥𝑥 − 2)2 − 2 = 0 

1
4

(𝑥𝑥 − 2)2 = 2 

(𝑥𝑥 − 2)2 = 8 

�(𝑥𝑥 − 2)2 = √8 

|𝑥𝑥 − 2| = 2√2 

𝑥𝑥 − 2 = ±2√2 

𝑥𝑥 = 2 ± 2 = �2 + 2√2
2− 2√2

 

 Hence, the two 𝑥𝑥-intercepts are: �𝟐𝟐 − 𝟐𝟐√𝟐𝟐,𝟎𝟎� and �𝟐𝟐 + 𝟐𝟐√𝟐𝟐,𝟎𝟎�. 
 

b. Since 𝑔𝑔(0) = −2(1)2 − 3 = −5, then the 𝑦𝑦-intercept is (𝟎𝟎,−𝟓𝟓).  

 To find 𝑥𝑥-intercepts, we attempt to solve the equation  

−2(𝑥𝑥 + 1)2 − 3 = 0 

−2(𝑥𝑥 + 1)2 = 3 

(𝑥𝑥 + 1)2 = − 3
2
 

 

 However, since the last equation doesn’t have any solution, we conclude that function 
𝑔𝑔(𝑥𝑥) has no 𝑥𝑥-intercepts. 

 

 
 
 
 
 
 
 
 
 

Solution           

𝑥𝑥 

−5 

−1 

𝑦𝑦- intercept 

𝒈𝒈(𝒙𝒙) = −𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 

𝑥𝑥 −1 2 

𝑦𝑦-intercept 

  𝑥𝑥-intercepts 
 

𝒇𝒇(𝒙𝒙) = 𝟏𝟏
𝟒𝟒
(𝒙𝒙 − 𝟐𝟐)2

 nonnegative  negative 
cannot be equal 
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 Q.3  Exercises  

  
1. Match each quadratic function a.-d. with its graph I-IV. 
 
 a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 − 1 I   II 

 
 
  b. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 + 1 

 
 
 c. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 + 1 III   IV 

 
 
 d. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 − 1 

 
 
2. Match each quadratic function a.-d. with its graph I-IV. 
 
 a. 𝑔𝑔(𝑥𝑥) = −(𝑥𝑥 − 2)2 + 1 I   II 

 
 
  b. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 − 1 

 
 
 c. 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2 + 1  III   IV 

 
 
 d. 𝑔𝑔(𝑥𝑥) = 2(𝑥𝑥 + 2)2 − 1 

 

 
3. Match each quadratic function with the characteristics of its parabolic graph. 

 a. 𝑓𝑓(𝑥𝑥) = 5(𝑥𝑥 − 3)2 + 2   I vertex (3,2), opens down 

 b. 𝑓𝑓(𝑥𝑥) = −4(𝑥𝑥 + 2)2 − 3   II vertex (3,2), opens up 

 c. 𝑓𝑓(𝑥𝑥) = − 1
2

(𝑥𝑥 − 3)2 + 2   III vertex (−2,−3), opens down 

 d. 𝑓𝑓(𝑥𝑥) = 1
4

(𝑥𝑥 + 2)2 − 3   IV vertex (−2,−3), opens up 

𝑥𝑥 
1 

2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 −1 

−2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 −1
2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 
1 

−2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 −1 

−2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 
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For each quadratic function, describe the shape (as wider, narrower, or the same as the shape of 𝑦𝑦 = 𝑥𝑥2) and 
opening (up or down) of its graph. Then graph it and determine its range. 

4. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2   5. 𝑓𝑓(𝑥𝑥) = − 1
2
𝑥𝑥2   6. 𝑓𝑓(𝑥𝑥) = −3

2
𝑥𝑥2 

7. 𝑓𝑓(𝑥𝑥) = 5
2
𝑥𝑥2   8. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2    9. 𝑓𝑓(𝑥𝑥) = 1

3
𝑥𝑥2 

 
Graph each parabola by plotting its vertex, and following its shape and opening. Then, describe transformations 
of the basic parabola that would lead to the obtained graph. Finally, state the domain and range, and the equation 
of the axis of symmetry. 

10. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2  11. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 2   12. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 5 

13. 𝑓𝑓(𝑥𝑥) = −(𝑥𝑥 + 2)2  14. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 − 1   15. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 2)2 
 
For each parabola, state its vertex, shape, opening, and x- and y-intercepts. Then, graph the function and 
describe transformations of the basic parabola that would lead to the obtained graph.  

16. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 1    17. 𝑓𝑓(𝑥𝑥) = −3
4
𝑥𝑥2 + 3 

18. 𝑓𝑓(𝑥𝑥) = −1
2

(𝑥𝑥 + 4)2 + 2   19. 𝑓𝑓(𝑥𝑥) = 5
2

(𝑥𝑥 − 2)2 − 4 

20. 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 3)2 + 3
2
    21. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 + 1)2 + 5 

22. 𝑓𝑓(𝑥𝑥) = −2
3

(𝑥𝑥 + 2)2 + 4   23. 𝑓𝑓(𝑥𝑥) = 4
3

(𝑥𝑥 − 3)2 − 2 
 
24. Four students, A, B, C, and D, tried to graph the function 𝑓𝑓(𝑥𝑥) = −2(𝑥𝑥 + 1)2 − 3 by transforming the graph 

of the basic parabola, 𝑦𝑦 = 𝑥𝑥2. Here are the transformations that each student applied 

   Student A:       Student B: 
 - shift 1 unit left and 3 units down   - dilation of 𝑦𝑦-values by the factor of −2  
 - dilation of 𝑦𝑦-values by the factor of −2    - shift 1 unit left  
       - shift 3 units down 
 

  Student C:  Student D: 
 - flip over the 𝑥𝑥-axis - shift 1 unit left  
 - shift 1 unit left and 3 units down - dilation of 𝑦𝑦-values by the factor of 2   
 - dilation of 𝑦𝑦-values by the factor of 2 - shift 3 units down 
   - flip over the 𝑥𝑥-axis 

 With the assumption that all transformations were properly applied, discuss whose graph was correct and what 
went wrong with the rest of the graphs. Is there any other sequence of transformations that would result in a 
correct graph?  

For each parabola, state the coordinates of its vertex and then graph it. Finally, state the extreme value 
(maximum or minimum, whichever applies) and the range of the function.  

25. 𝑓𝑓(𝑥𝑥) = 3(𝑥𝑥 − 1)2 26. 𝑓𝑓(𝑥𝑥) = −5
2

(𝑥𝑥 + 3)2    
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27. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 − 3 28. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 + 4)2 + 5   

29. 𝑓𝑓(𝑥𝑥) = −2(𝑥𝑥 − 5)2 − 2 30. 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 4)2 + 1  

31. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 1)2 + 3
2
 32. 𝑓𝑓(𝑥𝑥) = −1

2
(𝑥𝑥 − 1)2 − 3   

33. 𝑓𝑓(𝑥𝑥) = −1
4

(𝑥𝑥 − 3)2 + 4 34. 𝑓𝑓(𝑥𝑥) = 3
4
�𝑥𝑥 + 5

2
�
2
− 3

2
  

  
Given the graph of a parabola, state the most probable equation of the corresponding function. Hint: Use the 
vertex form of a quadratic function. 

35.  36.  37. 

 

 

 

 

 

 

38.  39.  40. 

 

 

𝑥𝑥 

−4 

−3 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

5 

3 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

−5 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

2 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

−2 

𝑓𝑓(𝑥𝑥) 
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Q4 Properties of Quadratic Functions and Optimization Problems 

  In the previous section, we examined how to graph and read the characteristics of the graph 
of a quadratic function given in vertex form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − 𝑝𝑝)2 + 𝑞𝑞.  In this section, we 
discuss the ways of graphing and reading the characteristics of the graph of a quadratic 
function given in standard form, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄. One of these ways is to convert 
standard form of the function to vertex form by completing the square so that the 
information from the vertex form may be used for graphing. The other handy way of 
graphing and reading properties of a quadratic function is to factor the defining trinomial 
and use the symmetry of a parabolic function.  

  At the end of this section, we apply properties of quadratic functions to solve certain 
optimization problems. To solve these problems, we look for the maximum or minimum 
of a particular quadratic function satisfying specified conditions called constraints. 
Optimization problems often appear in geometry, calculus, business, computer science, etc. 

 

 Graphing Quadratic Functions Given in the Standard Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 
 

 

To graph a quadratic function given in standard form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, we can use 
one of the following methods: 

1. constructing a table of values (this would always work, but it could be cumbersome); 
2. converting to vertex form by using the technique of completing the square (see 

Examples 1-3); 
3. factoring and employing the properties of a parabolic function. (this is a handy method 

if the function can be easily factored – see Examples 4 and 5) 
 

 
The table of values approach can be used for any function, and it was already discussed on 
various occasions throughout this textbook.  

Converting to vertex form involves completing the square. For example, to convert the 
function 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 𝑥𝑥 − 5 to its vertex form, we might want to start by dividing both 
sides of the equation by the leading coefficient 2, and then complete the square for the 
polynomial on the right side of the equation, as below. 

𝑓𝑓(𝑥𝑥)
2

= 𝑥𝑥2 +
1
2
𝑥𝑥 −

5
2

 

𝑓𝑓(𝑥𝑥)
2

= �𝑥𝑥 +
1
4
�
2

−
1

16
−

5 ∙ 8
2 ∙ 8

 

𝑓𝑓(𝑥𝑥)
2

= �𝑥𝑥 +
1
4
�
2

−
41
16

 

Finally, the vertex form is obtained by multiplying both sides of the equation back 
by 2. So, we have  

𝑓𝑓(𝑥𝑥) = 2 �𝑥𝑥 +
1
4
�
2

−
41
8

 

This form lets us identify the vertex, �− 1
4

,−41
8
�, and the shape, 𝑦𝑦 = 2𝑥𝑥2, of the 

parabola, which is essential for graphing it. To create an approximate graph of Figure 4.1 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒙𝒙 − 𝟓𝟓 

1 

−5 

2 

https://commons.wikimedia.org/wiki/Early_iron_and_steel_bridges#/media/File:Garabit.jpg
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function 𝑓𝑓, we may want to round the vertex to approximately (−0.25,−5.1) and evaluate 
𝑓𝑓(0) = 2 ∙ 02 + 0 − 5 = −5. So, the graph is as in Figure 4.1.  

 

 Converting the Standard Form of a Quadratic Function to the Vertex Form 
   

Rewrite each function in its vertex form. Then, identify the vertex.  

a. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 2𝑥𝑥   b. 𝑔𝑔(𝑥𝑥) = 1
2
𝑥𝑥2 + 𝑥𝑥 + 3   

 

a. To convert 𝑓𝑓 to its vertex form, we follow the completing the square procedure. After 
dividing the equation by the leading coefficient, 

𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 2𝑥𝑥, 
 we have 

𝑓𝑓(𝑥𝑥)
−3

= 𝑥𝑥2 −
2
3
𝑥𝑥 

 Then, we complete the square for the right side of the equation, 

𝑓𝑓(𝑥𝑥)
−3

= �𝑥𝑥 −
1
3
�
2

−
1
9

, 

 and finally, multiply back by the leading coefficient,  

𝑓𝑓(𝑥𝑥) = −3 �𝑥𝑥 −
1
3
�
2

+
1
3

. 

 Therefore, the vertex of this parabola is at the point �𝟏𝟏
𝟑𝟑

, 𝟏𝟏
𝟑𝟑
�.  

 

b. As in the previous example, to convert 𝑔𝑔 to its vertex form, we first wish to get rid of 
the leading coefficient. This can be achieved by multiplying both sides of the equation 
𝑔𝑔(𝑥𝑥) = 1

2
𝑥𝑥2 + 𝑥𝑥 + 3 by 2. So, we obtain 

2𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 + 6 

2𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 1)2 − 1 + 6 

2𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 1)2 + 5, 

 which can be solved back for 𝑔𝑔, 

𝑔𝑔(𝑥𝑥) =
1
2

(𝑥𝑥 + 1)2 +
5
2

. 

 
 Therefore, the vertex of this parabola is at the point �−𝟏𝟏, 𝟓𝟓

𝟐𝟐
�.  

  
 

Completing the square allows us to derive a formula for the vertex of the graph of any quadratic function given in its 
standard form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, where 𝑎𝑎 ≠ 0. Applying the same procedure as in Example 1, we calculate 

Solution           
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𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= 𝑥𝑥2 +
𝑏𝑏
𝑎𝑎
𝑥𝑥 +

𝑐𝑐
𝑎𝑎

 

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= �𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

−
𝑏𝑏2

4𝑎𝑎2
+
𝑐𝑐
𝑎𝑎

 

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= �𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

−
𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

4𝑎𝑎2
 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 �𝑥𝑥 − �−
𝑏𝑏

2𝑎𝑎
��

2

+
−(𝑏𝑏2 − 4𝑎𝑎𝑎𝑎)

4𝑎𝑎
 

Thus, the coordinates of the vertex (𝒑𝒑,𝒒𝒒) are 𝒑𝒑 = − 𝒃𝒃
𝟐𝟐𝟐𝟐

  and  𝒒𝒒 = −�𝒃𝒃𝟐𝟐−𝟒𝟒𝟒𝟒𝟒𝟒�
𝟒𝟒𝟒𝟒

= −∆
𝟒𝟒𝟒𝟒

 . 

 
 

Observation: Notice that the expression for 𝑞𝑞 can also be found by evaluating 𝑓𝑓 at 
    𝑥𝑥 = − 𝒃𝒃

𝟐𝟐𝟐𝟐
.  

 

 

So, the vertex of the parabola can also be expressed as �− 𝒃𝒃
𝟐𝟐𝟐𝟐

,𝒇𝒇 �− 𝒃𝒃
𝟐𝟐𝟐𝟐
��. 

 
 

Summarizing, the vertex of a parabola defined by 𝑓𝑓(𝑥𝑥) = 𝒂𝒂𝑥𝑥2 + 𝒃𝒃𝑥𝑥 + 𝒄𝒄, where 𝒂𝒂 ≠ 0, 
can be calculated by following one of the formulas: 

 �− 𝒃𝒃
𝟐𝟐𝟐𝟐

, −�𝒃𝒃
𝟐𝟐−𝟒𝟒𝟒𝟒𝟒𝟒�
𝟒𝟒𝟒𝟒

� = �− 𝒃𝒃
𝟐𝟐𝟐𝟐

, −∆
𝟒𝟒𝟒𝟒
� = �− 𝒃𝒃

𝟐𝟐𝟐𝟐
,𝒇𝒇 �− 𝒃𝒃

𝟐𝟐𝟐𝟐
�� 

 
 

 

 Using the Vertex Formula to Find the Vertex of a Parabola 
   

Use the vertex formula to find the vertex of the graph of  𝑓𝑓(𝑥𝑥)  = −𝑥𝑥2 − 𝑥𝑥 + 1.   

 

The first coordinate of the vertex is equal to  − 𝑏𝑏
2𝑎𝑎

= − −1
2∙(−1)

= −𝟏𝟏
𝟐𝟐
. 

The second coordinate can be calculated by following the formula 

−∆
4𝑎𝑎

=
−((−1)2 − 4 ∙ (−1) ∙ 1)

4 ∙ (−1) =
𝟓𝟓
𝟒𝟒

, 

or by evaluating 𝑓𝑓 �− 1
2
�  = −�− 1

2
�
2
− �− 1

2
�+ 1 = −1

4
+ 1

2
+ 1 = 𝟓𝟓

𝟒𝟒
. 

So, the vertex is �−𝟏𝟏
𝟐𝟐 , 𝟓𝟓𝟒𝟒�.  

 

 

Recall: This is 
the discriminant  

∆! 

Solution           
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 Graphing a Quadratic Function Given in Standard Form 
   

Graph each function.   

a. 𝑔𝑔(𝑥𝑥) = 1
2
𝑥𝑥2 + 𝑥𝑥 + 3   b. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 𝑥𝑥 + 1 

 

a. The shape of the graph of function 𝑔𝑔 is the same as that 
of 𝑦𝑦 = 1

2
𝑥𝑥2. Since the leading coefficient is positive, the 

arms of the parabola open up.  
 The vertex, �−𝟏𝟏, 𝟓𝟓

𝟐𝟐
�, was found in Example 1b as a result 

of completing the square. Since the vertex is in quadrant 
II and the graph opens up, we do not expect any 𝑥𝑥-
intercepts. However, without much effort, we can find the 
𝑦𝑦-intercept by evaluating 𝑔𝑔(0) = 𝟑𝟑. Furthermore, since 
(0, 3) belongs to the graph, then by symmetry, (−2, 3) 
must also belong to the graph. So, we graph function 𝑔𝑔 is 
as in Figure 4.2. 

 
b. The graph of function 𝑓𝑓 has the shape of the basic 

parabola. Since the leading coefficient is negative, the 
arms of the parabola open down.  

 The vertex, �− 𝟏𝟏
𝟐𝟐 , 𝟓𝟓𝟒𝟒�, was found in Example 2 by using 

the vertex formula. Since the vertex is in quadrant II and 
the graph opens down, we expect two 𝑥𝑥-intercepts. Their 
values can be found via the quadratic formula applied to 
the equation −𝑥𝑥2 − 𝑥𝑥 + 1 = 0. So, the 𝑥𝑥-intercepts are 

𝑥𝑥1,2 = 1±√5
−2

≈ −𝟏𝟏.𝟔𝟔 𝑜𝑜𝑜𝑜 𝟎𝟎.𝟔𝟔. In addition, the 𝑦𝑦-intercept of 
the graph is 𝑓𝑓(0) = 𝟏𝟏.  

 Using all this information, we graph function 𝑓𝑓, as in Figure 4.3. 
 
 
 

 Graphing Quadratic Functions Given in the Factored Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐) 
 

What if a quadratic function is given in factored form? Do we have to change it to 
vertex or standard form in order to find the vertex and graph it?  

The factored form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − 𝑟𝑟1)(𝑥𝑥 − 𝑟𝑟2), allows us to find the roots (or 𝑥𝑥-
intercepts) of such a function. These are 𝑟𝑟1 and 𝑟𝑟2. A parabola is symmetrical about the 
axis of symmetry, which is the vertical line passing through its vertex. So, the first 
coordinate of the vertex is the same as the first coordinate of the midpoint of the line 
segment connecting the roots, 𝑟𝑟1 with 𝑟𝑟2, as indicated in Figure 4.4. Thus, the first 
coordinate of the vertex is the average of the two roots, 𝑟𝑟1+ 𝑟𝑟2

2
. Then, the second 

coordinate of the vertex can be found by evaluating 𝑓𝑓 �𝑟𝑟1+ 𝑟𝑟2
2

�. 
 

                    Figure 4.2 

Solution           

𝑥𝑥 

𝒈𝒈(𝒙𝒙) = 𝟏𝟏
𝟐𝟐𝒙𝒙

𝟐𝟐 + 𝒙𝒙 + 𝟑𝟑 

3 

1 

Figure 4.3 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐 − 𝒙𝒙 + 𝟏𝟏 

2 

2 

 

When plotting points 
with fractional 

coordinates, round the 
values to one place 

value. 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐) 

𝑟𝑟2 𝑟𝑟1 

𝑟𝑟1 +  𝑟𝑟2
2  

Figure 4.4 
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 Graphing a Quadratic Function Given in a Factored Form 
   

Graph function 𝑔𝑔(𝑥𝑥) = −(𝑥𝑥 − 2)(𝑥𝑥 + 1).   
 

First, observe that the graph of function 𝑔𝑔 has the same shape 
as the graph of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2. Since the 
leading coefficient is negative, the arms of the parabola open 
down. Also, the graph intersects the 𝑥𝑥-axis at 2 and −1. So, 
the first coordinate of the vertex is the average of 2 and −1, 
which is 1

2
. The second coordinate is  

𝑔𝑔 �
1
2
� = −�

1
2
− 2� �

1
2

+ 1� =  −�−
3
2
� �

3
2
� =

9
4

 

Therefore, function 𝑔𝑔 can be graphed by connecting the 
vertex, �𝟏𝟏

𝟐𝟐
, 𝟗𝟗
𝟒𝟒
�, and the 𝑥𝑥-intercepts, (−1,0) and (2,0), with a 

parabolic curve, as in Figure 4.5. For a more precise graph, we may additionally plot the 
𝑦𝑦-intercept, 𝑔𝑔(0) = 2, and the symmetrical point 𝑔𝑔(1) = 2.  

 

 Using Complete Factorization to Graph a Quadratic Function 
   

Graph function 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 − 2𝑥𝑥 − 6. 
    

Since the discriminant ∆= (−2)2 − 4 ∙ 4 ∙ (−6) = 4 + 96 =
100 is a perfect square number, the defining trinomial is 
factorable. So, to graph function 𝑓𝑓, we may want to factor it 
first. Notice that the GCF of all the terms is 2. So, 𝑓𝑓(𝑥𝑥) =
2(2𝑥𝑥2 − 𝑥𝑥 − 3). Then, using factoring techniques discussed 
in Section F2, we obtain 𝑓𝑓(𝑥𝑥) = 2(2𝑥𝑥 − 3)(𝑥𝑥 + 1). This 
form allows us to identify the roots (or zeros) of function 𝑓𝑓, 
which are 3

2
 and −1. So, the first coordinate of the vertex is 

the average of  3
2

= 1.5  and −1, which is 1.5+(−1)
2

= 0.5
2

=
0.25. The second coordinate can be calculated by evaluating  

𝑓𝑓(0.25) = 2(2 ∙ 0.25 − 3)(0.25 + 1) =  2(0.5− 3)(1.25) = 2(−2.5)(1.25) = −6.25 

So, we can graph function 𝑓𝑓 by connecting its vertex, (𝟎𝟎.𝟐𝟐𝟐𝟐,−𝟔𝟔.𝟐𝟐𝟐𝟐), and its 𝑥𝑥-intercepts, 
(−1,0) and (1.5,0), with a parabolic curve, as in Figure 4.6. For a more precise graph, we 
may additionally plot the 𝑦𝑦-intercept, 𝑓𝑓(0) = −6, and by symmetry, 𝑓𝑓(0.5) = −6. 

 
 
 

 Observation: Since 𝑥𝑥-intercepts of a parabola are the solutions (zeros) of its equation, the equation of a 
parabola with 𝑥𝑥-intercepts at 𝒓𝒓𝟏𝟏 and 𝒓𝒓𝟐𝟐 can be written as 

        𝒚𝒚 = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐), 

   for some real coefficient 𝒂𝒂 ≠ 0. 

                     Figure 4.5 

Solution           

−1 𝑥𝑥 

𝒈𝒈(𝒙𝒙) = −(𝒙𝒙 − 𝟐𝟐)(𝒙𝒙+ 𝟏𝟏) 

2 

2 

                     Figure 4.6 

Solution           

−1 𝑥𝑥 

𝒈𝒈(𝒙𝒙) = −(𝒙𝒙 − 𝟐𝟐)(𝒙𝒙+ 𝟏𝟏) 

2 

2 
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 Finding an Equation of a Quadratic Function Given Its Solutions 
   

a. Find an equation of a quadratic function whose graph passes the 𝑥𝑥-axis at −1 and 3. 
b. Find an equation of a quadratic function whose graph passes the 𝑥𝑥-axis at −1 and 3 

and the 𝑦𝑦-axis at −4. 
c. Write a quadratic equation with integral coefficients knowing that the solutions of this 

equation are 1
2
 and −2

3
. 

a. 𝑥𝑥-intercepts of a function are the zeros of this function. So, −1 and 3 are the zeros of 
the quadratic function. This means that the defining formula for such function should 
include factors �𝑥𝑥 − (−1)� and (𝑥𝑥 − 3). So, it could be 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)(𝑥𝑥 − 3).  

 Notice that this is indeed a quadratic function with 𝑥𝑥-intercepts at −1 and 3. Hence, it 
satisfies the conditions of the problem. 

 
b. Using the solution to Example 6a, notice that any function of the form  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 + 1)(𝑥𝑥 − 3), 

where 𝑎𝑎 is a nonzero real number, is a quadratic function with 𝑥𝑥-intercepts at −1 and 
3. To guarantee that the graph of our function passes through the point (0,−4), we 
need to find the particular value of the coefficient 𝑎𝑎. This can be done by substituting 
𝑥𝑥 = 0 and 𝑓𝑓(𝑥𝑥) = −4 into the function’s equation and solving it for 𝑎𝑎. Thus,  

−4 = 𝑎𝑎(0 + 1)(0 − 3) 

−4 = −3𝑎𝑎 

𝑎𝑎 = 4
3
, 

and the desired function is  𝑓𝑓(𝑥𝑥) = 4
3

(𝑥𝑥 + 1)(𝑥𝑥 − 3). 

c. First, observe that 1
2
 is a solution to the linear equation 2𝑥𝑥 − 1 = 0. Similarly, −2

3
 is a 

solution to the equation 3𝑥𝑥 + 2 = 0. Multiplying these two equations side by side, we 
obtain a quadratic equation 
(2𝑥𝑥 − 1)(3𝑥𝑥 + 2) = 0 

that satisfies the conditions of the problem.  
 

Note: Here, we could create the desired equation by writing 

       �𝑥𝑥 − 1
2
� �𝑥𝑥 − �−2

3
�� = 0 

  and then multiplying it by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝟔𝟔 = 𝟐𝟐 ∙ 𝟑𝟑  

          𝟐𝟐 �𝑥𝑥 − 1
2
� 𝟑𝟑 �𝑥𝑥 + 2

3
� = 𝟔𝟔 ∙ 0 

          (2𝑥𝑥 − 1)(3𝑥𝑥 + 2) = 0 
 

 

Solution           

−1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟒𝟒
𝟑𝟑

(𝒙𝒙+ 𝟏𝟏)(𝒙𝒙 − 𝟑𝟑) 

−4 

3 
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 Optimization Problems 
 

In many applied problems we are interested in maximizing or minimizing some quantity 
under specific conditions, called constraints. For example, we might be interested in 
finding the greatest area that can be fenced in by a given length of fence, or minimizing the 
cost of producing a container of a given shape and volume. These types of problems are 
called optimization problems.  
Since the vertex of the graph of a quadratic function is either the highest or the lowest point 
of the parabola, it can be used in solving optimization problems that can be modeled by a 
quadratic function.  
 
 

The vertex of a parabola provides the following information.  
• The 𝑦𝑦-value of the vertex gives the maximum or minimum value of 𝑦𝑦.  
• The 𝑥𝑥-value tells where the maximum or minimum occurs. 
 

 

 Maximizing Area of a Rectangular Region 
    

John has 60 meters of fencing to enclose a rectangular field by his barn. Assuming that the 
barn forms one side of the rectangle, find the maximum area he can enclose and the 
dimensions of the enclosed field that yield this area. 
 
Let 𝑙𝑙 and 𝑤𝑤 represent the length and width of the enclosed area correspondingly, as 
indicated in Figure 4.7. The 60 meters of fencing is used to cover the distance of twice 
along the width and once along the length. So, we can form the constraint equation 

2𝑤𝑤 + 𝑙𝑙 = 60 

To analyse the area of the field,  
𝐴𝐴 = 𝑙𝑙𝑙𝑙, 

we would like to express it as a function of one variable, for example 𝑤𝑤. To do this, we can 
solve the constraint equation (1) for 𝑙𝑙 and substitute the obtained expression into the 
equation of area, (2). Since 𝑙𝑙 = 60 − 2𝑤𝑤, then 

𝐴𝐴 = 𝑙𝑙𝑙𝑙 = (60 − 2𝑤𝑤)𝑤𝑤 

Observe that the graph of the function  𝐴𝐴(𝑤𝑤) = (60 − 2𝑤𝑤)𝑤𝑤  is a parabola that opens down 
and intersects the 𝑥𝑥-axis at 0 and 30. This is because the leading coefficient of (60 − 2𝑤𝑤)𝑤𝑤 
is negative and the roots to the equation (60 − 2𝑤𝑤)𝑤𝑤 = 0 are 0 and 30. These roots are 
symmetrical in the axis of symmetry, which also passes through the vertex of the parabola, 
as illustrated in Figure 4.8. So, the first coordinate of the vertex is the average of the two 
roots, which is 0+30

2
= 15. Thus, the width that would maximize the enclosed area is 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 𝟏𝟏𝟏𝟏 meters. Consequently, the length that would maximize the enclosed area is 
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 60 − 2𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 60 − 2 ∙ 15 = 𝟑𝟑𝟑𝟑 meters. The maximum area represented by the 
second coordinate of the vertex can be obtained by evaluating the function of area at the 
width of 15 meters.   

𝐴𝐴(15) = (60 − 2 ∙ 15)15 = 30 ∙ 15 = 450 m2 

Solution           

(1) 

 

fenced area 

barn 

𝑙𝑙 

𝑤𝑤 𝑤𝑤 

Figure 4.7 (2) 

 

𝑤𝑤 

𝑨𝑨(𝒘𝒘) = (𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐)𝒘𝒘 

30 0 15 

Figure 4.8 
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So, the maximum area that can be enclosed by 60 meters of fencing is 450 square meters, 
and the dimensions of this rectangular area are 15 by 30 meters.                               

 

 Minimizing Average Unit Cost 
   

A company producing skateboards has determined that when 𝑥𝑥 hundred skateboards are 
produced, the average cost of producing one skateboard can be modelled by the function  

𝐶𝐶(𝑥𝑥) = 0.15𝑥𝑥2 − 0.75𝑥𝑥 + 1.5, 

where 𝐶𝐶(𝑥𝑥) is in hundreds of dollars. How many skateboards should be produced to 
minimize the average cost of producing one skateboard? What would this cost be? 

 
Since 𝐶𝐶(𝑥𝑥) is a quadratic function, to find its minimum, it is enough to find the vertex of 
the parabola 𝐶𝐶(𝑥𝑥) = 0.15𝑥𝑥2 − 0.75𝑥𝑥 + 1.5. This can be done either by completing the 
square or by using the formula for the vertex, �−𝑏𝑏

2𝑎𝑎
, −∆
4𝑎𝑎
�. We will do the latter. So, the vertex 

is 

�
−𝑏𝑏
2𝑎𝑎

,
−∆
4𝑎𝑎
� = �

0.75
0.3

,
−(0.752 − 4 ∙ 0.15 ∙ 1.5)

0.6
� = �2.5,

−(0.5625 − 1.35)
0.6

�

= �2.5,
0.3375

0.6
� = (𝟐𝟐.𝟓𝟓,𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓). 

This means that the lowest average unit cost can be achieved when 250 skateboards are 
produced, and that the lowest average cost of producing a skateboard would be $56.25. 

 
   

 Q.4  Exercises  

 Convert each quadratic function to its vertex form. Then, state the coordinates of the vertex. 

1. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 6𝑥𝑥 + 10  2. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥 − 5  3. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 3 

4. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥 + 7  5. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 7𝑥𝑥 + 3  6. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 4𝑥𝑥 + 1  

7. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 6𝑥𝑥 + 12 8. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 − 8𝑥𝑥 + 10  9. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥2 + 3𝑥𝑥 − 1 

 

Use the vertex formula, �− 𝑏𝑏
2𝑎𝑎

, −∆
4𝑎𝑎
�, to find the coordinates of the vertex of each parabola. 

10. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 6𝑥𝑥 + 3  11. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 3𝑥𝑥 − 5  12. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥2 − 4𝑥𝑥 − 7   

13. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 6𝑥𝑥 + 5 14. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥2 − 7𝑥𝑥   15. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 6𝑥𝑥 − 20 
 
For each parabola, state its vertex, opening and shape. Then graph it and state the domain and range. 

16. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 5𝑥𝑥  17. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3𝑥𝑥   18. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 − 5  

19. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 6𝑥𝑥 − 3  20. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 3𝑥𝑥 + 2  21. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 12𝑥𝑥 + 18 

Solution           
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22. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 + 3𝑥𝑥 − 1 23. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 + 4𝑥𝑥 + 1  24. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 4𝑥𝑥 + 2  
 

For each quadratic function, state its zeros (roots), coordinates of the vertex, opening and shape. Then graph it 
and identify its extreme (minimum or maximum) value as well as where it occurs.  

25. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)(𝑥𝑥 + 2)  26. 𝑓𝑓(𝑥𝑥) = −(𝑥𝑥 + 3)(𝑥𝑥 − 1)  27. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥   

28. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 5𝑥𝑥  29. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 8𝑥𝑥 + 16  30. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 4𝑥𝑥 − 4 

31. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥2 − 1)  32. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 3)(𝑥𝑥 − 4)  33. 𝑓𝑓(𝑥𝑥) = −3
2

(𝑥𝑥 − 1)(𝑥𝑥 − 5)  
 

Find an equation of a quadratic function satisfying the given conditions. 

34. passes the 𝑥𝑥-axis at −2 and 5      35. has 𝑥𝑥-intercepts at 0 and 2
5
 

36. passes the 𝑥𝑥-axis at −3 and −1 and 𝑦𝑦-axis at 2  37. 𝑓𝑓(1) = 0, 𝑓𝑓(4) = 0, 𝑓𝑓(0) = 3 
 

Write a quadratic equation with the indicated solutions using only integral coefficients. 

38. −5 and 6  39. 0 and 1
3
     40. −2

5
 and 3

4
     41. 2  

 
42. Suppose the 𝑥𝑥-intercepts of the graph of a parabola are (𝑥𝑥1, 0) and (𝑥𝑥2, 0). What is the equation of the axis 

of symmetry of this graph? 
 
43. How can we determine the number of 𝑥𝑥-intercepts of the graph of a quadratic function without graphing the 

function? 
 

True or false? Explain. 

44. The domain and range of a quadratic function are both the set of real numbers.  

45. The graph of every quadratic function has exactly one 𝑦𝑦-intercept. 

46. The graph of 𝑦𝑦 = −2(𝑥𝑥 − 1)2 − 5 has no 𝑥𝑥-intercepts.   

47. The maximum value of 𝑦𝑦 in the function 𝑦𝑦 = −4(𝑥𝑥 − 1)2 + 9 is 9.  

48. The value of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 + 1 is at its minimum when 𝑥𝑥 = 0. 

49. The graph of 𝑓𝑓(𝑥𝑥) = 9𝑥𝑥2 + 12𝑥𝑥 + 4 has one 𝑥𝑥-intercept and one 𝑦𝑦-intercept.   

50. If a parabola opens down, it has two 𝑥𝑥-intercepts. 
 

Solve each problem. 

51. A ball is projected from the ground straight up with an initial velocity of 24.5 m/sec. The function ℎ(𝑡𝑡) =
−4.9𝑡𝑡2 + 24.5𝑡𝑡 allows for calculating the height ℎ(𝑡𝑡), in meters, of the ball above the ground after 𝑡𝑡 seconds. 
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What is the maximum height reached by the ball? In how many seconds should we expect the ball to come 
back to the ground? 

52. A firecracker is fired straight up and explodes at its maximum height above the ground. The function ℎ(𝑡𝑡) =
−4.9𝑡𝑡2 + 98𝑡𝑡 allows for calculating the height ℎ(𝑡𝑡), in meters, of the firecracker above the ground 𝑡𝑡 seconds 
after it was fired. In how many seconds after firing should we expect the firecracker to explode and at what 
height? 

53. Antonio prepares and sells his favourite desserts at a market stand. Suppose his daily cost, C, 
in dollars, to sell 𝑛𝑛 desserts can be modelled by the function 𝐶𝐶(𝑛𝑛) = 0.5𝑛𝑛2 − 30𝑛𝑛 + 350. 
How many of these desserts should he sell to minimize the cost and what is the minimum 
cost?  

54. Chris has a hot-dog stand. His daily cost, C, in dollars, to sell n hot-dogs can be modelled by the function 
𝐶𝐶(𝑛𝑛) = 0.1𝑛𝑛2 − 15𝑛𝑛 + 700. How many hotdogs should he sell to minimize the cost and what is the 
minimum cost? 

55. Find two positive numbers with a sum of 32 that would produce the maximum product.   

56. Find two numbers with a difference of 32 that would produce the minimum product.  

57. Luke uses 16 meters of fencing to enclose a rectangular area for his baby goats. The enclosure shares one 
side with a large barn, so only 3 sides need to be fenced. If Luke wishes to enclose the greatest area, what 
should the dimensions of the enclosure be? 

58. Ryan uses 60 meters of fencing to enclose a rectangular area for his livestock. He plans to subdivide the area 
by placing additional fence down the middle of the rectangle to separate different types of livestock. What 
dimensions of the overall rectangle will maximize the total area of the enclosure? 

59. Julia works as a tour guide. She charges $58 for an individual tour. When more people come for a tour, she 
charges $2 less per person for each additional person, up to 25 people.  

 a.  Express the price per person 𝑃𝑃 as a function of the number of people 𝑛𝑛, for 𝑛𝑛 ∈ {1,2, … ,25}.  
 b.  Express her revenue, 𝑅𝑅, as a function of the number of people on tour.  

c. How many people on tour would maximize Julia’s revenue?  
d.  What is the highest revenue she can achieve? 

60. One-day adult passes for The Mission Folk Festival cost $50. At this price, the organizers 
of the festival expect about 1300 people to purchase the pass. Suppose that the organizers observe that every 
time they increase the cost per pass by 5$, the number of passes sold decrease by about 100.  

     a.   Express the number of passes sold, 𝑁𝑁, as a function of the cost, 𝑐𝑐, of a one-day pass.  
     b.   Express the revenue, 𝑅𝑅, as a function of the cost, 𝑐𝑐, of a one-day pass.  
    c.   How much should a one-day pass costs to maximize the revenue? 
 d.  What is the maximum revenue? 
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