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 Addition and Subtraction of Polynomials 

Polynomials and Polynomial Functions 
One of the simplest types of algebraic expressions is a polynomial. Polynomials 
are formed only by addition and multiplication of variables and constants. Since 
both addition and multiplication produce unique values for any given inputs, 
polynomials are in fact functions.  Some of the simplest polynomial functions are 
linear functions, such as 𝑃𝑃(𝑥𝑥) = 2𝑥𝑥 + 1, and quadratic functions, such as 
𝑄𝑄(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 6. Due to their comparably simple form, polynomial functions 
appear in a wide variety of areas of mathematics and science, economics, business, 
and many other areas of life. Polynomial functions are often used to model various natural phenomena, such as 
the shape of a mountain, the distribution of temperature, the trajectory of projectiles, etc. The shape and properties 
of polynomial functions are helpful when constructing such structures as roller coasters or bridges, solving 
optimization problems, or even analysing stock market prices. 

In this chapter, we will introduce polynomial terminology, perform operations on polynomials, and evaluate and 
compose polynomial functions. 

P1 Addition and Subtraction of Polynomials 

Terminology of Polynomials 

Recall that products of constants, variables, or expressions are called terms (see Section 
R3, Definition 3.1). Terms that are products of only numbers and variables are called 
monomials. Examples of monomials are  −2𝑥𝑥,  𝑥𝑥𝑦𝑦2,  2

3
𝑥𝑥3,  etc. 

Definition 1.1 A polynomial is a sum of monomials. 

A polynomial in a single variable is the sum of terms of the form 𝑎𝑎𝑥𝑥𝑛𝑛, where 𝑎𝑎 is a 
numerical coefficient, 𝑥𝑥 is the variable, and 𝑛𝑛 is a whole number. 

An n-th degree polynomial in 𝑥𝑥-variable has the form 

𝒂𝒂𝒏𝒏𝒙𝒙𝒏𝒏 + 𝒂𝒂𝒏𝒏−𝟏𝟏𝒙𝒙𝒏𝒏−𝟏𝟏 + ⋯+ 𝒂𝒂𝟐𝟐𝒙𝒙𝟐𝟐 + 𝒂𝒂𝟏𝟏𝒙𝒙 + 𝒂𝒂𝟎𝟎, 

where 𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛−1, … ,𝑎𝑎2, 𝑎𝑎1,𝑎𝑎0 ∈ ℝ, 𝑎𝑎𝑛𝑛 ≠ 0. 

Note: A polynomial can always be considered as a sum of monomial terms even though 
there are negative signs when writing it. 
For example, polynomial  𝑥𝑥2 − 3𝑥𝑥 − 1  can be seen as the sum of signed terms  

 𝑥𝑥2  +   −3𝑥𝑥 +  −1

Definition 1.2 The degree of a monomial is the sum of exponents of all its variables. 

For example, the degree of  5𝑥𝑥3𝑦𝑦 is 4, as the sum of the exponent of 𝑥𝑥3, which is 3 and the 
exponent of 𝑦𝑦, which is 1. To record this fact, we write deg(5𝑥𝑥3𝑦𝑦) = 4. 

The degree of a polynomial is the highest degree out of all its terms. 

For example, the degree of  2𝑥𝑥2𝑦𝑦3 + 3𝑥𝑥4 − 5𝑥𝑥3𝑦𝑦 + 7 is 5 because deg(2𝑥𝑥2𝑦𝑦3) = 5 and 
the degrees of the remaining terms are not greater than 5. 

https://unsplash.com/photos/FOsina4f7qM
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Polynomials and Polynomial Functions 

Polynomials that are sums of two terms, such as 𝑥𝑥2 − 1, are called binomials. 
Polynomials that are sums of three terms, such as 𝑥𝑥2 + 5𝑥𝑥 − 6 are called trinomials. 

The leading term of a polynomial is the highest degree term. 
The leading coefficient is the numerical coefficient of the leading term. 
So, the leading term of the polynomial 1 − 𝑥𝑥 − 𝑥𝑥2 is −𝑥𝑥2, even though it is not the first 
term. The leading coefficient of the above polynomial is −1, as −𝑥𝑥2 can be seen as (−1)𝑥𝑥2. 

A first degree term is often referred to as a linear term. A second degree term can be 
referred to as a quadratic term. A zero degree term is often called a constant or a free 
term. 

Below are the parts of an n-th degree polynomial in a single variable 𝑥𝑥: 

𝒂𝒂𝒏𝒏 𝒙𝒙𝒏𝒏���
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

+ 𝒂𝒂𝒏𝒏−𝟏𝟏𝒙𝒙𝒏𝒏−𝟏𝟏 + ⋯+ 𝒂𝒂𝟐𝟐𝒙𝒙𝟐𝟐���
𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

+ 𝒂𝒂𝟏𝟏𝒙𝒙�
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

+ 𝒂𝒂𝟎𝟎�
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Note: Single variable polynomials are usually arranged in descending powers of the 
variable. Polynomials in more than one variable are arranged in decreasing degrees of 
terms. If two terms are of the same degree, they are arranged with respect to the descending 
powers of the variable that appers first in alphabetical order. 

For example, polynomial  𝑥𝑥2 + 𝑥𝑥 − 3𝑥𝑥4 − 1  is customarily arranged as follows 
−3𝑥𝑥4 + 𝑥𝑥2 + 𝑥𝑥 − 1,

while polynomial 3𝑥𝑥3𝑦𝑦2 + 2𝑦𝑦6 − 𝑦𝑦2 + 4 − 𝑥𝑥2𝑦𝑦3 + 2𝑥𝑥𝑥𝑥 is usually arranged as below. 

𝟐𝟐𝒚𝒚𝟔𝟔�
𝟔𝟔𝟔𝟔𝟔𝟔

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

+𝟑𝟑𝒙𝒙𝟑𝟑𝒚𝒚𝟐𝟐 − 𝒙𝒙𝟐𝟐𝒚𝒚𝟑𝟑�����������
𝟓𝟓𝟓𝟓𝟓𝟓 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂  
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒕𝒕𝒕𝒕 𝒙𝒙

+𝟐𝟐𝒙𝒙𝒚𝒚 − 𝒚𝒚𝟐𝟐�������
𝟐𝟐𝟐𝟐𝟐𝟐 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒕𝒕𝒕𝒕 𝒙𝒙

+𝟒𝟒�
𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒛

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Writing Polynomials in Descending Order and Identifying Parts of a Polynomial 

Suppose 𝑃𝑃 = 𝑥𝑥 − 6𝑥𝑥3 − 𝑥𝑥6 + 4𝑥𝑥4 + 2 and 𝑄𝑄 = 2𝑦𝑦 − 3𝑥𝑥𝑥𝑥𝑥𝑥 − 5𝑥𝑥2 + 𝑥𝑥𝑦𝑦2. For each 
polynomial: 

a. Write the polynomial in descending order.
b. State the degree of the polynomial and the number of its terms.
c. Identify the leading term, the leading coefficient, the coefficient of the linear term, the

coefficient of the quadratic term, and the free term of the polynomial.

a. After arranging the terms in descending powers of 𝑥𝑥, polynomial 𝑃𝑃 becomes

−𝒙𝒙𝟔𝟔 + 𝟒𝟒𝒙𝒙𝟒𝟒 − 𝟔𝟔𝒙𝒙𝟑𝟑 + 𝒙𝒙 + 𝟐𝟐,
while polynomial 𝑄𝑄 becomes 

𝒙𝒙𝒚𝒚𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟓𝟓𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐. 

Solution 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Notice that the first two terms, 𝑥𝑥𝑦𝑦2 and −3𝑥𝑥𝑦𝑦𝑥𝑥, are both of the same degree. So, to 
decide which one should be written first, we look at powers of 𝑥𝑥. Since these powers 
are again the same, we look at powers of 𝑦𝑦. This time, the power of 𝑦𝑦 in 𝑥𝑥𝑦𝑦2 is higher 
than the power of 𝑦𝑦 in −3𝑥𝑥𝑦𝑦𝑥𝑥. So, the term 𝑥𝑥𝑦𝑦2 should be written first. 

b. The polynomial 𝑃𝑃 has 5 terms. The highest power of 𝑥𝑥 in 𝑃𝑃 is 6, so the degree of the
polynomial 𝑃𝑃 is 6.
The polynomial 𝑄𝑄 has 4 terms. The highest degree terms in 𝑄𝑄 are 𝑥𝑥𝑦𝑦2 and −3𝑥𝑥𝑥𝑥𝑥𝑥,
both third degree. So the degree of the polynomial 𝑄𝑄 is 3.

c. The leading term of the polynomial 𝑃𝑃 = −𝑥𝑥6 + 4𝑥𝑥4 − 6𝑥𝑥3 + 𝑥𝑥 − 2 is −𝑥𝑥6, so the
leading coefficient equals −𝟏𝟏.
The linear term of 𝑃𝑃 is 𝑥𝑥, so the coefficient of the linear term equals 𝟏𝟏.
𝑃𝑃 doesn’t have any quadratic term so the coefficient of the quadratic term equals 0.
The free term of 𝑃𝑃 equals −𝟐𝟐.

The leading term of the polynomial 𝑄𝑄 = 𝑥𝑥𝑦𝑦2 − 3𝑥𝑥𝑥𝑥𝑥𝑥 − 5𝑥𝑥2 + 2𝑦𝑦 is 𝑥𝑥𝑦𝑦2, so the
leading coefficient is equal to 𝟏𝟏.
The linear term of 𝑄𝑄 is 2𝑦𝑦, so the coefficient of the linear term equals 𝟐𝟐.
The quadratic term of 𝑄𝑄 is −5𝑥𝑥2, so the coefficient of the quadratic term equals −𝟓𝟓.
The polynomial 𝑄𝑄 does not have a free term, so the free term equals 0.

Classifying Polynomials 

Describe each polynomial as a constant, linear, quadratic, or 𝑛𝑛-th degree polynomial. 
Decide whether it is a monomial, binomial, or trinomial, if applicable. 

a. 𝑥𝑥2 − 9 b. − 3𝑥𝑥7𝑦𝑦
c. 𝑥𝑥2 + 2𝑥𝑥 − 15 d. 𝜋𝜋
e. 4𝑥𝑥5 − 𝑥𝑥3 + 𝑥𝑥 − 7 f. 𝑥𝑥4 + 1

a. 𝑥𝑥2 − 9 is a second degree polynomial with two terms, so it is a quadratic binomial.

b. − 3𝑥𝑥7𝑦𝑦  is an 8-th degree monomial.

c. 𝑥𝑥2 + 2𝑥𝑥 − 15  is a second degree polynomial with three terms, so it is a quadratic
trinomial.

d. 𝜋𝜋  is a 0-degree term, so it is a constant monomial.

e. 4𝑥𝑥5 − 𝑥𝑥3 + 𝑥𝑥 − 7  is a 5-th degree polynomial.

f. 𝑥𝑥4 + 1  is a 4-th degree binomial.

Polynomials as Functions and Evaluation of Polynomials 

Each term of a polynomial in one variable is a product of a number and a power of the 
variable. The polynomial itself is either one term or a sum of several terms. Since taking a 
power of a given value, multiplying, and adding given values produce unique answers, 

Solution 
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Polynomials and Polynomial Functions 

polynomials are also functions. While 𝑓𝑓,  𝑔𝑔, or ℎ  are the most commonly used letters to 
represent functions, other letters can also be used. To represent polynomial functions, we 
customarily use capital letters, such as 𝑃𝑃, 𝑄𝑄, 𝑅𝑅, etc. 

Any polynomial function 𝑃𝑃 of degree 𝑛𝑛, has the form 

𝑷𝑷(𝒙𝒙) = 𝒂𝒂𝒏𝒏𝒙𝒙𝒏𝒏 + 𝒂𝒂𝒏𝒏−𝟏𝟏𝒙𝒙𝒏𝒏−𝟏𝟏 + ⋯+ 𝒂𝒂𝟐𝟐𝒙𝒙𝟐𝟐 + 𝒂𝒂𝟏𝟏𝒙𝒙 + 𝒂𝒂𝟎𝟎 

where 𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛−1, … ,𝑎𝑎2, 𝑎𝑎1,𝑎𝑎0 ∈ ℝ, 𝑎𝑎𝑛𝑛 ≠ 0, and 𝑛𝑛 ∈ 𝕎𝕎. 

Since polynomials are functions, they can be evaluated for different 𝑥𝑥-values. 

Evaluating Polynomials 

Given 𝑃𝑃(𝑥𝑥) = 3𝑥𝑥3 − 𝑥𝑥2  +  4, evaluate the following expressions: 

a. 𝑃𝑃(0) b. 𝑃𝑃(−1)
c. 2 ∙ 𝑃𝑃(1) d. 𝑃𝑃(𝑎𝑎)

a. 𝑃𝑃(0) = 3 ∙ 03 − 02  +  4 = 𝟒𝟒

b. 𝑃𝑃(−1) = 3 ∙ (−1)3 − (−1)2  +  4 = 3 ∙ (−1) − 1 +  4 = −3 − 1 + 4 = 𝟎𝟎

When evaluating at negative 𝑥𝑥-values, it is essential to use brackets in place of the variable 
before substituting the desired value. 

c. 2 ∙ 𝑃𝑃(1) = 2 ∙ (3 ∙ 13 − 12  +  4)�������������
𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑃𝑃(1)

= 2 ∙ (3− 1 + 4) = 2 ∙ 6 = 𝟏𝟏𝟏𝟏 

d. To find the value of 𝑃𝑃(𝑎𝑎), we replace the variable 𝑥𝑥 in 𝑃𝑃(𝑥𝑥) with 𝑎𝑎. So, this time the
final answer,

𝑃𝑃(𝑎𝑎) = 𝟑𝟑𝒂𝒂𝟑𝟑 − 𝒂𝒂𝟐𝟐  +  𝟒𝟒, 

is an expression in terms of 𝑎𝑎 rather than a specific number.  

Since polynomials can be evaluated at any real 𝑥𝑥-value, then the domain (see Section G3, 
Definition 5.1) of any polynomial is the set ℝ of all real numbers.  

Addition and Subtraction of Polynomials 

Recall that terms with the same variable part are referred to as like terms (see Section R3, 
Definition 3.1). Like terms can be combined by adding their coefficients. For example, 

2𝑥𝑥2𝑦𝑦 − 5𝑥𝑥2𝑦𝑦 = (2− 5)𝑥𝑥2𝑦𝑦�������������������
𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

= −3𝑥𝑥2𝑦𝑦 

Unlike terms, such as 2𝑥𝑥2 and 3𝑥𝑥, cannot be combined. 
 In practice, this step 

is not necessary to 
write. 

Solution 
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Simplifying Polynomial Expressions 

Simplify each polynomial expression. 

a. 5𝑥𝑥 − 4𝑥𝑥2 + 2𝑥𝑥 + 7𝑥𝑥2 b. 8𝑝𝑝 − (2− 3𝑝𝑝) + (3𝑝𝑝 − 6)

a. To simplify 5𝑥𝑥 − 4𝑥𝑥2 + 2𝑥𝑥 + 7𝑥𝑥2, we combine like terms, starting from the highest
degree terms. It is suggested to underline the groups of like terms, using different type
of underlining for each group, so that it is easier to see all the like terms and not to
miss any of them. So, 

5𝑥𝑥 −4𝑥𝑥2 +2𝑥𝑥 +7𝑥𝑥2 = 𝟑𝟑𝒙𝒙𝟐𝟐 + 𝟕𝟕𝟕𝟕 

b. To simplify 8𝑝𝑝 − (2− 3𝑝𝑝) + (3𝑝𝑝 − 6), first we remove the brackets using the
distributive property of multiplication and then we combine like terms. So, we have

8𝑝𝑝 − (2 − 3𝑝𝑝) + (3𝑝𝑝 − 6) 

= 8𝑝𝑝  − 2 +3𝑝𝑝 +3𝑝𝑝 − 6 

= 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟖𝟖 

Adding or Subtracting Polynomials 

Perform the indicated operations.  

a. (6𝑎𝑎5 − 4𝑎𝑎3 + 3𝑎𝑎 − 1) + (2𝑎𝑎4 + 𝑎𝑎2 − 5𝑎𝑎 + 9)
b. (4𝑦𝑦3 − 3𝑦𝑦2 + 𝑦𝑦 + 6) − (𝑦𝑦3 + 3𝑦𝑦 − 2)
c. [9𝑝𝑝 − (3𝑝𝑝 − 2)] − [4𝑝𝑝 − (3 − 7𝑝𝑝) + 𝑝𝑝]

a. To add polynomials, combine their like terms. So,

(6𝑎𝑎5 − 4𝑎𝑎3 + 3𝑎𝑎 − 1) + (2𝑎𝑎4 + 𝑎𝑎2 − 5𝑎𝑎 + 9) 

= 6𝑎𝑎5 − 4𝑎𝑎3+3𝑎𝑎 − 1 + 2𝑎𝑎4 + 𝑎𝑎2−5𝑎𝑎 + 9 

= 𝟔𝟔𝒂𝒂𝟓𝟓 + 𝟐𝟐𝒂𝒂𝟒𝟒 − 𝟒𝟒𝒂𝒂𝟑𝟑 + 𝒂𝒂𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟖𝟖 

b. To subtract a polynomial, add its opposite. In practice, remove any bracket preceeded
by a negative sign by reversing the signs of all the terms of the polynomial inside the
bracket. So,

(4𝑦𝑦3 − 3𝑦𝑦2 + 𝑦𝑦 + 6) − ( 𝑦𝑦3 + 3𝑦𝑦 − 2) 

= 4𝑦𝑦3 − 3𝑦𝑦2+𝑦𝑦  + 6  −𝑦𝑦3 −3𝑦𝑦  + 2 

= 𝟑𝟑𝒚𝒚𝟑𝟑 − 𝟑𝟑𝒚𝒚𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟖𝟖 

Solution 

Solution 

 remove any bracket 
preceeded by a “+” 

sign 

 
To remove a bracket 

preceeded by a “−” sign, 
reverse each sign inside 

the bracket. 

 
Remember that the 

sign in front of a term 
belongs to this term. 
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c. First, perform the operations within the square brackets and then subtract the resulting
polynomials. So,

[9𝑝𝑝 − ( 3𝑝𝑝 − 2)] − [4𝑝𝑝 − ( 3− 7𝑝𝑝) + 𝑝𝑝] 

= [9𝑝𝑝 − 3𝑝𝑝 + 2] − [4𝑝𝑝 − 3 + 7𝑝𝑝 + 𝑝𝑝] 

= [6𝑝𝑝 + 2] − [ 12𝑝𝑝 − 3] 

= 6𝑝𝑝 + 2 − 12𝑝𝑝 + 3 

= −𝟔𝟔𝟔𝟔 + 𝟓𝟓 

Addition and Subtraction of Polynomial Functions 

Similarly as for polynomials, addition and subtraction can also be defined for general 
functions. 

Definition 1.3 Suppose 𝑓𝑓 and 𝑔𝑔 are functions of 𝑥𝑥 with the corresponding domains 𝐷𝐷𝑓𝑓 and 𝐷𝐷𝑔𝑔. 

Then the sum function 𝒇𝒇 + 𝒈𝒈 is defined as 

(𝒇𝒇 + 𝒈𝒈)(𝒙𝒙) = 𝒇𝒇(𝒙𝒙) + 𝒈𝒈(𝒙𝒙) 

and the difference function 𝒇𝒇 − 𝒈𝒈 is defined as 

(𝒇𝒇 − 𝒈𝒈)(𝒙𝒙) = 𝒇𝒇(𝒙𝒙) − 𝒈𝒈(𝒙𝒙). 

The domain of the sum or difference function is the intersection 𝑫𝑫𝒇𝒇 ∩ 𝑫𝑫𝒈𝒈of the domains 
of the two functions. 

A frequently used application of a sum or difference of polynomial functions comes from 
the business area. The fact that profit 𝑃𝑃 equals revenue 𝑅𝑅 minus cost 𝐶𝐶 can be recorded 
using function notation as  

𝑃𝑃(𝑥𝑥) = (𝑅𝑅 − 𝐶𝐶)(𝑥𝑥) = 𝑅𝑅(𝑥𝑥)− 𝐶𝐶(𝑥𝑥), 

where 𝑥𝑥 is the number of items produced and sold. Then, if 𝑅𝑅(𝑥𝑥) = 6.5𝑥𝑥 and 𝐶𝐶(𝑥𝑥) =
3.5𝑥𝑥 + 900, the profit function becomes 

𝑷𝑷(𝒙𝒙) = 𝑅𝑅(𝑥𝑥) − 𝐶𝐶(𝑥𝑥) = 6.5𝑥𝑥 − (3.5𝑥𝑥 + 900) = 6.5𝑥𝑥 − 3.5𝑥𝑥 − 900 = 𝟑𝟑𝟑𝟑 − 𝟗𝟗𝟗𝟗𝟗𝟗. 

Adding or Subtracting Polynomial Functions 

Suppose 𝑃𝑃(𝑥𝑥) = 𝑥𝑥2 − 6𝑥𝑥 + 4  and 𝑄𝑄(𝑥𝑥) = 2𝑥𝑥2 − 1. Find the following: 

a. (𝑃𝑃 + 𝑄𝑄)(𝑥𝑥) and (𝑃𝑃 + 𝑄𝑄)(2)
b. (𝑃𝑃 − 𝑄𝑄)(𝑥𝑥) and (𝑃𝑃 − 𝑄𝑄)(−1)
c. (𝑃𝑃 + 𝑄𝑄)(𝑘𝑘)
d. (𝑃𝑃 − 𝑄𝑄)(2𝑎𝑎)

 
collect like terms 

before removing the 
next set of brackets 
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a. Using the definition of the sum of functions, we have

(𝑷𝑷 + 𝑸𝑸)(𝒙𝒙) = 𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥) = 𝑥𝑥2 − 6𝑥𝑥 + 4���������
𝑃𝑃(𝑥𝑥)

+ 2𝑥𝑥2 − 1�����
𝑄𝑄(𝑥𝑥)

= 𝟑𝟑𝟑𝟑𝟐𝟐 − 𝟔𝟔𝟔𝟔 + 𝟑𝟑 

Therefore, (𝑷𝑷 + 𝑸𝑸)(𝟐𝟐) = 3 ∙ 22 − 6 ∙ 2 + 3 = 12 − 12 + 3 = 𝟑𝟑. 

Alternatively, (𝑃𝑃 + 𝑄𝑄)(2) can be calculated without refering to the function 
(𝑃𝑃 + 𝑄𝑄)(𝑥𝑥), as shown below. 

(𝑷𝑷+ 𝑸𝑸)(𝟐𝟐) = 𝑃𝑃(2) + 𝑄𝑄(2) = 22 − 6 ∙ 2 + 4���������
𝑃𝑃(2)

+ 2 ∙ 22 − 1�������
𝑄𝑄(2)

= 4 − 12 + 4 + 8− 1 = 𝟑𝟑. 

b. Using the definition of the difference of functions, we have

(𝑷𝑷 −𝑸𝑸)(𝒙𝒙) = 𝑃𝑃(𝑥𝑥)− 𝑄𝑄(𝑥𝑥) = 𝑥𝑥2 − 6𝑥𝑥 + 4���������
𝑃𝑃(𝑥𝑥)

− (2𝑥𝑥2 − 1)�������
𝑄𝑄(𝑥𝑥)

= 𝑥𝑥2 − 6𝑥𝑥 + 4 − 2𝑥𝑥2 + 1 = −𝒙𝒙𝟐𝟐 − 𝟔𝟔𝟔𝟔 + 𝟓𝟓 

To evaluate (𝑃𝑃 − 𝑄𝑄)(−1), we will take advantage of the difference function calculated 
above. So, we have 

(𝑷𝑷 −𝑸𝑸)(−𝟏𝟏) = −(−1)2 − 6(−1) + 5 = −1 + 6 + 5 = 𝟏𝟏𝟏𝟏. 

c. By Definition 1.3,

(𝑷𝑷+ 𝑸𝑸)(𝒌𝒌) = 𝑃𝑃(𝑘𝑘) + 𝑄𝑄(𝑘𝑘) = 𝑘𝑘2 − 6𝑘𝑘 + 4 + 2𝑘𝑘2 − 1 = 𝟑𝟑𝟑𝟑𝟐𝟐 − 𝟔𝟔𝟔𝟔 + 𝟑𝟑 

Alternatively, we could use the sum function already calculated in the solution to 
Example 6a. Then, the result is instant: (𝑷𝑷 + 𝑸𝑸)(𝒌𝒌) = 𝟑𝟑𝟑𝟑𝟐𝟐 − 𝟔𝟔𝟔𝟔+ 𝟑𝟑. 

d. To find (𝑃𝑃 − 𝑄𝑄)(2𝑎𝑎), we will use the difference function calculated in the solution to
Example 6b. So, we have

(𝑷𝑷− 𝑸𝑸)(𝟐𝟐𝟐𝟐) = −(2𝑎𝑎)2 − 6(2𝑎𝑎) + 5 = −𝟒𝟒𝒂𝒂𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟓𝟓. 

P.1  Exercises

Determine whether the expression is a monomial. 

1. −𝜋𝜋𝑥𝑥3𝑦𝑦2 2. 5𝑥𝑥−4 3. 5√𝑥𝑥 4. √2𝑥𝑥4

Identify the degree and coefficient. 

5. 𝑥𝑥𝑦𝑦3 6. −𝑥𝑥2𝑦𝑦 7. √2𝑥𝑥𝑥𝑥 8. −3𝜋𝜋𝑥𝑥2𝑦𝑦5

Solution 
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Arrange each polynomial in descending order of powers of the variable. Then, identify the degree and the 
leading coefficient of the polynomial.  

9. 5− 𝑥𝑥 + 3𝑥𝑥2 − 2
5
𝑥𝑥3 10. 7𝑥𝑥 + 4𝑥𝑥4 − 4

3
𝑥𝑥3 11. 8𝑥𝑥4 + 2𝑥𝑥3 − 3𝑥𝑥 + 𝑥𝑥5

12. 4𝑦𝑦3 − 8𝑦𝑦5 + 𝑦𝑦7 13. 𝑞𝑞2 + 3𝑞𝑞4 − 2𝑞𝑞 + 1 14. 3𝑚𝑚2 − 𝑚𝑚4 + 2𝑚𝑚3

State the degree of each polynomial and identify it as a monomial, binomial, trinomial, or n-th degree 
polynomial if 𝑛𝑛 > 2.  

15. 7𝑛𝑛 − 5 16. 4𝑧𝑧2 − 11𝑧𝑧 + 2 17. 25

18. −6𝑝𝑝4𝑞𝑞 + 3𝑝𝑝3𝑞𝑞2 − 2𝑝𝑝𝑞𝑞3 − 𝑝𝑝4 19. −𝑚𝑚𝑛𝑛6 20. 16𝑘𝑘2 − 9𝑝𝑝2

Let 𝑃𝑃(𝑥𝑥) = −2𝑥𝑥2 + 𝑥𝑥 − 5  and 𝑄𝑄(𝑥𝑥) = 2𝑥𝑥 − 3. Evaluate each expression. 

21. 𝑃𝑃(−1) 22. 𝑃𝑃(0) 23. 2𝑃𝑃(1) 24. 𝑃𝑃(𝑎𝑎)

25. 𝑄𝑄(−1) 26. 𝑄𝑄(5) 27. 𝑄𝑄(𝑎𝑎) 28. 𝑄𝑄(3𝑎𝑎)

29. 3𝑄𝑄(−2) 30. 3𝑃𝑃(𝑎𝑎) 31. 3𝑄𝑄(𝑎𝑎) 32. 𝑄𝑄(𝑎𝑎 + 1)

Simplify each polynomial expression. 

33. 5𝑥𝑥 + 4𝑦𝑦 − 6𝑥𝑥 + 9𝑦𝑦 34. 4𝑥𝑥2 + 2𝑥𝑥 − 6𝑥𝑥2 − 6

35. 6𝑥𝑥𝑥𝑥 + 4𝑥𝑥 − 2𝑥𝑥𝑥𝑥 − 𝑥𝑥 36. 3𝑥𝑥2𝑦𝑦 + 5𝑥𝑥𝑦𝑦2 − 3𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦2

37. 9𝑝𝑝3 + 𝑝𝑝2 − 3𝑝𝑝3 + 𝑝𝑝 − 4𝑝𝑝2 + 2 38. 𝑛𝑛4 − 2𝑛𝑛3 + 𝑛𝑛2 − 3𝑛𝑛4 + 𝑛𝑛3

39. 4− (2 + 3𝑚𝑚) + 6𝑚𝑚 + 9 40. 2𝑎𝑎 − (5a − 3) − (7𝑎𝑎 − 2)

41. 6 + 3𝑥𝑥 − (2𝑥𝑥 + 1) − (2𝑥𝑥 + 9) 42. 4𝑦𝑦 − 8 − (−3 + 𝑦𝑦) − (11𝑦𝑦 + 5)

Perform the indicated operations. 

43. (𝑥𝑥2 − 5𝑦𝑦2 − 9𝑧𝑧2) + (−6𝑥𝑥2 + 9𝑦𝑦2 − 2𝑧𝑧2) 44. (7𝑥𝑥2𝑦𝑦 − 3𝑥𝑥𝑦𝑦2 + 4𝑥𝑥𝑥𝑥) + (−2𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦2 + 𝑥𝑥𝑥𝑥) 

45. (−3𝑥𝑥2 + 2𝑥𝑥 − 9) − (𝑥𝑥2 + 5𝑥𝑥 − 4) 46. (8𝑦𝑦2 − 4𝑦𝑦3 − 3𝑦𝑦) − (3𝑦𝑦2 − 9𝑦𝑦 − 7𝑦𝑦3)

47. (3𝑟𝑟6 + 5) + (−7𝑟𝑟2 + 2𝑟𝑟6 − 𝑟𝑟5) 48. (5𝑥𝑥2𝑎𝑎 − 3𝑥𝑥𝑎𝑎 + 2) + (−𝑥𝑥2𝑎𝑎 + 2𝑥𝑥𝑎𝑎 − 6)

49. (−5𝑎𝑎4 + 8𝑎𝑎2 − 9) − (6𝑎𝑎3 − 𝑎𝑎2 + 2) 50. (3𝑥𝑥3𝑎𝑎 − 𝑥𝑥𝑎𝑎 + 7) − (−2𝑥𝑥3𝑎𝑎 + 5𝑥𝑥2𝑎𝑎 − 1)

51. (10𝑥𝑥𝑥𝑥 − 4𝑥𝑥2𝑦𝑦2 − 3𝑦𝑦3) − (−9𝑥𝑥2𝑦𝑦2 + 4𝑦𝑦3 − 7𝑥𝑥𝑥𝑥) 

52. Subtract (−4𝑥𝑥 + 2𝑧𝑧2 + 3𝑚𝑚) from the sum of (2𝑧𝑧2 − 3𝑥𝑥 + 𝑚𝑚) and (𝑧𝑧2 − 2𝑚𝑚).

53. Subtract the sum of (2𝑧𝑧2 − 3𝑥𝑥 + 𝑚𝑚) and (𝑧𝑧2 − 2𝑚𝑚) from (−4𝑥𝑥 + 2𝑧𝑧2 + 3𝑚𝑚).

54. [2𝑝𝑝 − (3𝑝𝑝 − 6)] − ��5𝑝𝑝 − (8 − 9𝑝𝑝)� + 4𝑝𝑝�

55. −[3𝑧𝑧2 + 5𝑧𝑧 − (2𝑧𝑧2 − 6𝑧𝑧)] + ��8𝑧𝑧2 − (5𝑧𝑧 − 𝑧𝑧2)�+ 2𝑧𝑧2�

56. 5𝑘𝑘 − (5𝑘𝑘 − [2𝑘𝑘 − (4𝑘𝑘 − 8𝑘𝑘)]) + 11𝑘𝑘 − (9𝑘𝑘 − 12𝑘𝑘)
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For each pair of functions, find a) (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) and b) (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥). 

57. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥 − 6,   𝑔𝑔(𝑥𝑥) = −2 + 3𝑥𝑥 58. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 7𝑥𝑥 − 2,   𝑔𝑔(𝑥𝑥) = 6𝑥𝑥 + 5

59. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 5𝑥𝑥,   𝑔𝑔(𝑥𝑥) = −5𝑥𝑥2 + 2𝑥𝑥 + 1 60. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥𝑛𝑛 − 3𝑥𝑥 − 1,   𝑔𝑔(𝑥𝑥) = 5𝑥𝑥𝑛𝑛 + 𝑥𝑥 − 6

61. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2𝑛𝑛 − 3𝑥𝑥𝑛𝑛 + 3,   𝑔𝑔(𝑥𝑥) = −8𝑥𝑥2𝑛𝑛 + 𝑥𝑥𝑛𝑛 − 4

Let  𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟒𝟒,  𝑸𝑸(𝒙𝒙) = 𝟐𝟐𝟐𝟐 + 𝟓𝟓,  and  𝑹𝑹(𝒙𝒙) = 𝒙𝒙 − 𝟐𝟐. Find each of the following. 

62. (𝑃𝑃 + 𝑅𝑅)(−1) 63. (𝑃𝑃 − 𝑄𝑄)(−2) 64. (𝑄𝑄 − 𝑅𝑅)(3) 65. (𝑅𝑅 − 𝑄𝑄)(0)

66. (𝑅𝑅 − 𝑄𝑄)(𝑘𝑘) 67. (𝑃𝑃 + 𝑄𝑄)(𝑎𝑎) 68. (𝑄𝑄 − 𝑅𝑅)(𝑎𝑎 + 1) 69. (𝑃𝑃 + 𝑅𝑅)(2𝑘𝑘)

Solve each problem. 

70. Suppose that during the years 2000-2012 the revenue 𝑅𝑅 and the cost 𝐶𝐶 of a
particular business are modelled by the polynomials

𝑅𝑅(𝑡𝑡) = −0.296𝑡𝑡2 + 9.72𝑡𝑡 + 164  and  𝐶𝐶(𝑡𝑡) = 0.154𝑡𝑡2 + 2.15𝑡𝑡 + 135,

where 𝑡𝑡 represents the number of years since 2000 and both 𝑅𝑅(𝑡𝑡) and 𝐶𝐶(𝑡𝑡) are
in thousands of dollars. Write a polynomial that models the profit 𝑃𝑃(𝑡𝑡) of this
business during the years 2000-2012.

71. Suppose that the deflection 𝐷𝐷 of an 8 feet-long gymnastic bar can be
approximated by the polynomial function 𝐷𝐷(𝑥𝑥) = 0.037𝑥𝑥4 − 0.59𝑥𝑥3 + 2.35𝑥𝑥2,
where 𝑥𝑥 is the distance in feet from one end of the bar and 𝐷𝐷 is in centimeters. To the
nearest tenths of a centimeter, determine the maximum deflection for this bar,
assuming that it occurs at the middle of the bar.

72. Write a polynomial that can be used to calculate the sum of areas of a triangle with the
base and height of length 𝑥𝑥 and a circle with diameter 𝑥𝑥. Determine the total area of
the two shapes for 𝑥𝑥 = 5 centimeters. Round the answer to the nearest centimeter
square.

73. Suppose the cost in dollars of sewing 𝑛𝑛 dresses is given by 𝐶𝐶(𝑛𝑛) = 32𝑛𝑛 + 1500. If the dresses can be sold
for $56 each, complete the following.
a. Write a function 𝑅𝑅(𝑛𝑛) that gives the revenue for selling 𝑛𝑛 dresses.
b. Write a formula 𝑃𝑃(𝑛𝑛) for the profit. Recall that profit is defined as the difference between revenue and

cost.
c. Evaluate 𝑃𝑃(100) and interpret the answer.

Years since 2000 

200 

150 

100 

50 

4 6 10 8 

 Cost 

 Profit 

2 

Th
ou

sa
nd

s o
f d

ol
la

rs
 

 Revenue 

  𝐷𝐷 8 𝑓𝑓𝑓𝑓 𝑥𝑥 

𝑥𝑥 

𝑥𝑥 𝑥𝑥 

https://www.youtube.com/watch?v=jJRJrc9V_sY
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𝑎𝑎   +   𝑏𝑏 

 𝑎𝑎   +
  𝑏𝑏 

P2 Multiplication of Polynomials 

As shown in the previous section, addition and subtraction of polynomials results in another 
polynomial. This means that the set of polynomials is closed under the operation of 
addition and subtraction. In this section, we will show that the set of polynomials is also 
closed under the operation of multiplication, meaning that a product of polynomials is also 
a polynomial.  

Properties of Exponents 

Since multiplication of polynomials involves multiplication of powers, let us review 
properties of exponents first.  
Recall: 

𝒂𝒂𝒏𝒏 = 𝒂𝒂 ∙ 𝒂𝒂 ∙ … ∙ 𝒂𝒂�������
𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

 

For example,  𝑥𝑥4 = 𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥  and we read it “𝑥𝑥 to the fourth power” or shorter “𝑥𝑥 to the 
fourth”. If 𝑛𝑛 = 2, the power 𝑥𝑥2 is customarily read “𝑥𝑥 squared”.  If 𝑛𝑛 = 3, the power 𝑥𝑥3 is 
often read “𝑥𝑥 cubed”.        

Let 𝑎𝑎 ∈ ℝ, and 𝑚𝑚, 𝑛𝑛 ∈ 𝕎𝕎. The table below shows basic exponential rules with some 
examples justifying each rule.       

Power Rules for Exponents 

General Rule Description Example 

𝒂𝒂𝒎𝒎 ∙ 𝒂𝒂𝒏𝒏 = 𝒂𝒂𝒎𝒎+𝒏𝒏 
To multiply powers of the same 
bases, keep the base and add the 
exponents. 

𝑥𝑥2 ∙ 𝑥𝑥3 = (𝑥𝑥 ∙ 𝑥𝑥) ∙ (𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥) 
= 𝑥𝑥2+3 = 𝑥𝑥5 

𝒂𝒂𝒎𝒎

𝒂𝒂𝒏𝒏
= 𝒂𝒂𝒎𝒎−𝒏𝒏 

To divide powers of the same 
bases, keep the base and subtract 
the exponents. 

𝑥𝑥5

𝑥𝑥2
=

(𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥 ∙ 𝑥𝑥)
(𝑥𝑥 ∙ 𝑥𝑥)

= 𝑥𝑥5−2 = 𝑥𝑥3 

(𝒂𝒂𝒎𝒎)𝒏𝒏 = 𝒂𝒂𝒎𝒎𝒎𝒎 To raise a power to a power, 
multiply the exponents. 

(𝑥𝑥2)3 = (𝑥𝑥 ∙ 𝑥𝑥)(𝑥𝑥 ∙ 𝑥𝑥)(𝑥𝑥 ∙ 𝑥𝑥) 
= 𝑥𝑥2∙3 = 𝑥𝑥6 

(𝒂𝒂𝒂𝒂)𝒏𝒏 = 𝒂𝒂𝒏𝒏𝒃𝒃𝒏𝒏 To raise a product to a power, 
raise each factor to that power.   

(2𝑥𝑥)3 = 23𝑥𝑥3 

�
𝒂𝒂
𝒃𝒃
�
𝒏𝒏

=
𝒂𝒂𝒏𝒏

𝒃𝒃𝒏𝒏

To raise a quotient to a power, 
raise the numerator and the 
denominator to that power. 

�
𝑥𝑥
3
�
2

=
𝑥𝑥2

32

𝒂𝒂𝟎𝟎 = 𝟏𝟏 for 𝒂𝒂 ≠ 𝟎𝟎 
𝟎𝟎𝟎𝟎 is undefined 

A nonzero number raised to the 
power of zero equals one. 

𝑥𝑥0 = 𝑥𝑥𝑛𝑛−𝑛𝑛 =
𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛
= 1 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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Simplifying Exponential Expressions 

Simplify. 
a. (−3𝑥𝑥𝑦𝑦2)4 b. (5𝑝𝑝3𝑞𝑞)(−2𝑝𝑝𝑞𝑞2)

c. �−2𝑥𝑥
5

𝑥𝑥2𝑦𝑦
�
3

d. 𝑥𝑥2𝑎𝑎𝑥𝑥𝑎𝑎 

a. To simplify (−3𝑥𝑥𝑦𝑦2)4, we apply the fourth power to each factor in the bracket. So,

(−3𝑥𝑥𝑦𝑦2)4 = (−3)4���
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑜𝑜𝑜𝑜 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∙ 𝑥𝑥4 ∙ (𝑦𝑦2)4���
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝟑𝟑𝟒𝟒𝒙𝒙𝟒𝟒𝒚𝒚𝟖𝟖 

b. To simplify (5𝑝𝑝3𝑞𝑞)(−2𝑝𝑝𝑞𝑞2), we multiply numbers, powers of 𝑝𝑝, and powers of 𝑞𝑞. So,

(5𝑝𝑝3𝑞𝑞)(−2𝑝𝑝𝑞𝑞2) = (−2) ∙ 5 ∙ 𝑝𝑝3 ∙ 𝑝𝑝���
𝑎𝑎𝑎𝑎𝑎𝑎 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∙ 𝑞𝑞 ∙ 𝑞𝑞2���
𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= −𝟏𝟏𝟏𝟏𝒑𝒑𝟒𝟒𝒒𝒒𝟑𝟑 

c. To simplify �−2𝑥𝑥
5

𝑥𝑥2𝑦𝑦
�
3
, first we reduce the common factors and then we raise every 

factor of the numerator and denominator to the third power. So, we obtain 

�
−2𝑥𝑥5

𝑥𝑥2𝑦𝑦
�
3

= �
−2𝑥𝑥3

𝑦𝑦
�
3

=
(−2)3(𝑥𝑥3)3

𝑦𝑦3
=
−𝟖𝟖𝒙𝒙𝟗𝟗

𝒚𝒚𝟑𝟑

d. When multiplying powers with the same bases, we add exponents, so 𝑥𝑥2𝑎𝑎𝑥𝑥𝑎𝑎 = 𝒙𝒙𝟑𝟑𝟑𝟑 

Multiplication of Polynomials 

Multiplication of polynomials involves finding products of monomials. To multiply 
monomials, we use the commutative property of multiplication and the product rule of 
powers.  

Multiplying Monomials 

Find each product. 
a. (3𝑥𝑥4)(5𝑥𝑥3) b. (5𝑏𝑏)(−2𝑎𝑎2𝑏𝑏3) c. −4𝑥𝑥2(3𝑥𝑥𝑥𝑥)(−𝑥𝑥2𝑦𝑦)

a. (3𝑥𝑥4)(5𝑥𝑥3) = 3 ∙ 𝑥𝑥4 ∙ 5���
 

∙ 𝑥𝑥3 = 3 ∙ 5 ∙ 𝑥𝑥4 ∙ 𝑥𝑥3���
 

= 𝟏𝟏𝟏𝟏𝒙𝒙𝟕𝟕

b. (5𝑏𝑏)(−2𝑎𝑎2𝑏𝑏3) = 5(−2)𝑎𝑎2𝑏𝑏𝑏𝑏3 = −𝟏𝟏𝟏𝟏𝒂𝒂𝟐𝟐𝒃𝒃𝟒𝟒 

c. −4𝑥𝑥2(3𝑥𝑥𝑥𝑥)(−𝑥𝑥2𝑦𝑦) = (−4) ∙ 3 ∙ (−1)���������
 

𝑥𝑥2𝑥𝑥𝑥𝑥2���
 

𝑦𝑦𝑦𝑦�
 

= 𝟏𝟏𝟏𝟏𝒙𝒙𝟓𝟓𝒚𝒚𝟐𝟐

Solution 

Solution 

3 

commutative 
property 

product 
rule of powers 

multiply 
coefficients 

apply product 
rule of powers 

 

To find the product 
of monomials, find 

the following: 
• the final sign, 
• the number, 
• the power.

 

The intermediate steps are 
not necessary to write. 

The final answer is 
immediate if we follow the 

order: sign, number, 
power of each variable. 



12   | Section P2 

Polynomials and Polynomial Functions 

To multiply polynomials by a monomial, we use the distributive property of multiplication. 

Multiplying Polynomials by a Monomial 

Find each product. 
a. −2𝑥𝑥(3𝑥𝑥2 − 𝑥𝑥 + 7) b. (5𝑏𝑏 − 𝑎𝑎𝑏𝑏3)(3𝑎𝑎𝑏𝑏2)

a. To find the product −2𝑥𝑥(3𝑥𝑥2 − 𝑥𝑥 + 7), we distribute the monomial −2𝑥𝑥 to each term
inside the bracket. So, we have

−2𝑥𝑥(3𝑥𝑥2 − 𝑥𝑥 + 7) = −2𝑥𝑥(3𝑥𝑥2) − 2𝑥𝑥(−𝑥𝑥) − 2𝑥𝑥(7)�������������������
𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= −𝟔𝟔𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 

b. (5𝑏𝑏 − 𝑎𝑎𝑏𝑏3)(3𝑎𝑎𝑏𝑏2) = 5𝑏𝑏(3𝑎𝑎𝑏𝑏2) − 𝑎𝑎𝑏𝑏3(3𝑎𝑎𝑏𝑏2)���������������
𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 = 15𝑎𝑎𝑏𝑏3 − 3𝑎𝑎2𝑏𝑏5  = −𝟑𝟑𝒂𝒂𝟐𝟐𝒃𝒃𝟓𝟓 + 𝟏𝟏𝟏𝟏𝟏𝟏𝒃𝒃𝟑𝟑 

When multiplying polynomials by polynomials we multiply each term of the first 
polynomial by each term of the second polynomial. This process can be illustrated with 
finding areas of a rectangle whose sides represent each polynomial. For example, we 
multiply (2𝑥𝑥 + 3)(𝑥𝑥2 − 3𝑥𝑥 + 1) as shown below 

So,   (2𝑥𝑥 + 3)(𝑥𝑥2 − 3𝑥𝑥 + 1) = 2𝑥𝑥3−6𝑥𝑥2 + 2𝑥𝑥 
+3𝑥𝑥2 − 9𝑥𝑥 + 3

  

Multiplying Polynomials by Polynomials 

Find each product. 
a. (3𝑦𝑦2 − 4𝑦𝑦 − 2)(5𝑦𝑦 − 7) b. 4𝑎𝑎2(2𝑎𝑎 − 3)(3𝑎𝑎2 + 𝑎𝑎 − 1)

a. To find the product (3𝑦𝑦2 − 4𝑦𝑦 − 2)(5𝑦𝑦 − 7), we can distribute the terms of the
second bracket over the first bracket and then collect the like terms. So, we have

(3𝑦𝑦2 − 4𝑦𝑦 − 2)(5𝑦𝑦 − 7) = 15𝑦𝑦3 − 20𝑦𝑦2 − 10𝑦𝑦 

− 21𝑦𝑦2 + 28𝑦𝑦 + 14

 = 𝟏𝟏𝟏𝟏𝒚𝒚𝟑𝟑 − 𝟒𝟒𝟒𝟒𝒚𝒚𝟐𝟐 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏    

b. To find the product 4𝑎𝑎2(2𝑎𝑎 − 3)(3𝑎𝑎2 + 𝑎𝑎 − 1), we will multiply the two brackets
first, and then multiply the resulting product by 4𝑎𝑎2. So,

Solution 

Solution 

 
arranged in 

decreasing order 
of powers 

𝑥𝑥2       − 3𝑥𝑥 + 12𝑥𝑥   +
3 −9𝑥𝑥3𝑥𝑥2 3 

2𝑥𝑥3 2𝑥𝑥−6𝑥𝑥2 
 line up like terms to 

combine them = 𝟐𝟐𝒙𝒙𝟑𝟑−𝟑𝟑𝟑𝟑𝟐𝟐 − 𝟕𝟕𝟕𝟕+ 𝟑𝟑 



 Multiplication of Polynomials 

𝑎𝑎   +   𝑏𝑏 

 𝑎𝑎   +
  𝑏𝑏 𝑏𝑏2 𝑎𝑎𝑏𝑏 

𝑎𝑎2  𝑎𝑎𝑏𝑏 
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4𝑎𝑎2(2𝑎𝑎 − 3)(3𝑎𝑎2 + 𝑎𝑎 − 1)  = 4𝑎𝑎2 ��6�𝑎𝑎�
3 �+� �2�𝑎𝑎

2
� �−�2�𝑎𝑎� −� �9�𝑎𝑎

2
� �−�3�𝑎𝑎�+��3��

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

= 4𝑎𝑎2(6𝑎𝑎3 − 7𝑎𝑎2 − 5𝑎𝑎 + 3) = 𝟐𝟐𝟐𝟐𝒂𝒂𝟓𝟓 − 𝟐𝟐𝟐𝟐𝒂𝒂𝟒𝟒 − 𝟐𝟐𝟐𝟐𝒂𝒂𝟑𝟑 + 𝟏𝟏𝟏𝟏𝒂𝒂𝟐𝟐 

In multiplication of binomials, it might be convenient to keep track of the multiplying terms 
by following the FOIL mnemonic, which stands for multiplying the First, Outer, Inner, 
and Last terms of the binomials. Here is how it works:  

(2𝑥𝑥 − 3)(𝑥𝑥 + 5) = 2𝑥𝑥2 +10𝑥𝑥 − 3𝑥𝑥�������
𝑡𝑡ℎ𝑒𝑒 𝒔𝒔𝒔𝒔𝒔𝒔 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 𝑎𝑎𝑎𝑎𝑎𝑎 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡ℎ𝑒𝑒 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

− 15 = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟕𝟕𝟕𝟕 − 𝟏𝟏𝟏𝟏 

Using the FOIL Method in Binomial Multiplication 

Find each product. 
a. (𝑥𝑥 + 3)(𝑥𝑥 − 4) b. (5𝑥𝑥 − 6)(2𝑥𝑥 + 3)

a. To find the product (𝑥𝑥 + 3)(𝑥𝑥 − 4), we may follow the FOIL method

  (𝑥𝑥 + 3)(𝑥𝑥 − 4) = 𝒙𝒙𝟐𝟐 − 𝒙𝒙 − 𝟏𝟏𝟏𝟏 

b. Observe that the linear term of the product (5𝑥𝑥 − 6)(2𝑥𝑥 + 3) is equal to the sum of
−12𝑥𝑥 and 15𝑥𝑥, which is 3𝑥𝑥. So, we have

(5𝑥𝑥 − 6)(2𝑥𝑥 + 3) = 𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑 − 𝟏𝟏𝟏𝟏 

Special Products 

Suppose we want to find the product (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏). This can be done via the FOIL 
method 

(𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 + 𝒃𝒃) = 𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2 = 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐, 

or via the geometric visualization: 

Solution 

First Last 

Outer 
Inner 

𝑥𝑥2 −12 

−4𝑥𝑥
3𝑥𝑥 

 
To find the linear 

(middle) term try to add 
the inner and outer 
products mentally. 
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Observe that since the products of the inner and outer terms are both equal to 𝑎𝑎𝑎𝑎, we can 
use a shortcut and write the middle term of the final product as 2𝑎𝑎𝑎𝑎. We encorage the reader 
to come up with similar observations regarding the product (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏). This regularity 
in multiplication of a binomial by itself leads us to the perfect square formula:  

(𝒂𝒂 ± 𝒃𝒃)𝟐𝟐 = 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 

In the above notation, the " ± " sign is used to record two formulas at once, the perferct 
square of a sum and the perfect square of a difference. It tells us to either use a " + " in both 
places, or a " − " in both places. The 𝒂𝒂 and 𝒃𝒃 can actually represent any expression. For 
example, to expand (2𝑥𝑥 − 𝑦𝑦2)2, we can apply the perfect square formula by treating 2𝑥𝑥 as 
𝑎𝑎 and 𝑦𝑦2 as 𝑏𝑏. Here is the calculation. 

(2𝑥𝑥 − 𝑦𝑦2)2 = (2𝑥𝑥)2 − 2(2𝑥𝑥)𝑦𝑦2 + (𝑦𝑦2)2 = 𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟒𝟒𝟒𝟒𝒚𝒚𝟐𝟐 + 𝒚𝒚𝟒𝟒 

Another interesting pattern can be observed when multiplying two conjugate brackets, 
such as (𝑎𝑎 + 𝑏𝑏) and (𝑎𝑎 − 𝑏𝑏). Using the FOIL method,  

(𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) = 𝑎𝑎2 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 − 𝑏𝑏2 = 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐, 

we observe that the products of the inner and outer terms are opposite. So, they add to zero 
and the product of conjugate brackets becomes the difference of squares of the two terms. 
This regularity in multiplication of conjugate brackets leads us to the difference of squares 
formula.  

(𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) = 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 

Again, 𝒂𝒂 and 𝒃𝒃 can represent any expression. For example, to find the product 
(3𝑥𝑥 + 0.1𝑦𝑦2)(3𝑥𝑥 − 0.1𝑦𝑦2), we can apply the difference of squares formula by treating 3𝑥𝑥 
as 𝑎𝑎 and 0.1𝑦𝑦2 as 𝑏𝑏. Here is the calculation. 

�𝟑𝟑𝟑𝟑 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟑𝟑��𝟑𝟑𝟑𝟑 − 𝟎𝟎.𝟏𝟏𝒚𝒚𝟑𝟑� = (3𝑥𝑥)2 − (0.1𝑦𝑦3)2 = 𝟗𝟗𝒙𝒙𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝒚𝒚𝟔𝟔 

We encourage the use of the above formulas whenever applicable, as it allows for more 
efficient calculations and helps to observe patterns useful in future factoring. 

Using Special Product Formulas in Polynomial Multiplication 

Find each product. Apply special products formulas, if applicable. 
a. (5𝑥𝑥 + 3𝑦𝑦)2 b. (𝑥𝑥 + 𝑦𝑦 − 5)(𝑥𝑥 + 𝑦𝑦 + 5)

a. Applying the perfect square formula, we have

(5𝑥𝑥 + 3𝑦𝑦)2 = (5𝑥𝑥)2 + 2(5𝑥𝑥)3𝑦𝑦 + (3𝑦𝑦)2 = 𝟐𝟐𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟗𝟗𝒚𝒚𝟐𝟐 

b. The product (𝑥𝑥 + 𝑦𝑦 − 5)(𝑥𝑥 + 𝑦𝑦 + 5) can be found by multiplying each term of the
first polynomial by each term of the second polynomial, using the distributive property.
However, we can find the product (𝑥𝑥 + 𝑦𝑦 − 5)(𝑥𝑥 + 𝑦𝑦 + 5) in a more efficient way by

Solution 

 
Conjugate binomials 
have the same first 
terms and opposite 

second terms. 
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applying the difference of squares formula. Treating the expression 𝑥𝑥 + 𝑦𝑦 as the first term 
𝑎𝑎 and the 5 as the second term 𝑏𝑏 in the formula (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2, we obtain 

(𝑥𝑥 + 𝑦𝑦 − 5)(𝑥𝑥 + 𝑦𝑦 + 5) = (𝑥𝑥 + 𝑦𝑦)2 − 52 

  = 𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐+ 𝒚𝒚𝟐𝟐�����������
ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

− 𝟐𝟐𝟐𝟐 

Caution: The perfect square formula shows that (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 ≠ 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐. 
The difference of squares formula shows that (𝒂𝒂 − 𝒃𝒃)𝟐𝟐 ≠ 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐. 
More generally, (𝒂𝒂 ± 𝒃𝒃)𝒏𝒏 ≠ 𝒂𝒂𝒏𝒏 ± 𝒃𝒃𝒏𝒏 for any natural 𝑛𝑛 ≠ 1. 

Product Functions 

The operation of multiplication can be defined not only for polynomials but also for general 
functions. 

Definition 2.1 Suppose 𝑓𝑓 and 𝑔𝑔 are functions of 𝑥𝑥 with the corresponding domains 𝐷𝐷𝑓𝑓 and 𝐷𝐷𝑔𝑔. 

Then the product function, denoted 𝒇𝒇 ∙ 𝒈𝒈 or 𝒇𝒇𝒇𝒇, is defined as 

(𝒇𝒇 ∙ 𝒈𝒈)(𝒙𝒙) = 𝒇𝒇(𝒙𝒙) ∙ 𝒈𝒈(𝒙𝒙). 

The domain of the product function is the intersection 𝑫𝑫𝒇𝒇 ∩ 𝑫𝑫𝒈𝒈of the domains of the two 
functions. 

Multiplying Polynomial Functions 

Suppose 𝑃𝑃(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥  and 𝑄𝑄(𝑥𝑥) = 3𝑥𝑥 + 2. Find the following: 

a. (𝑃𝑃𝑃𝑃)(𝑥𝑥), (𝑃𝑃𝑃𝑃)(−2), and 𝑃𝑃(−2)𝑄𝑄(−2)
b. (𝑄𝑄𝑄𝑄)(𝑥𝑥) and (𝑄𝑄𝑄𝑄)(1)
c. 2(𝑃𝑃𝑃𝑃)(𝑘𝑘)

a. Using the definition of the product function, we have

(𝑃𝑃𝑃𝑃)(𝑥𝑥) = 𝑃𝑃(𝑥𝑥) ∙ 𝑄𝑄(𝑥𝑥) = (𝑥𝑥2 − 4𝑥𝑥)(3𝑥𝑥 + 2) = 3𝑥𝑥3 + 2𝑥𝑥2 − 12𝑥𝑥2 − 8𝑥𝑥

 = 𝟑𝟑𝒙𝒙𝟑𝟑 − 𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐 − 𝟖𝟖𝟖𝟖 

To find (𝑃𝑃𝑃𝑃)(−2), we substitute 𝑥𝑥 = −2 to the above polynomial function. So, 

(𝑃𝑃𝑃𝑃)(−2) = 3(−2)3 − 10(−2)2 − 8(−2) = 3 ∙ (−8) − 10 ∙ 4 + 16 

 = −24 − 40 + 16 = −𝟒𝟒𝟒𝟒 

To find 𝑃𝑃(−2)𝑄𝑄(−2), we calculate 
𝑃𝑃(−2)𝑄𝑄(−2) = �(−2)2 − 4(−2)�(3(−2) + 2) = (4 + 8)(−6 + 2) = 12 ∙ (−4) 

= −𝟒𝟒𝟒𝟒 

Solution 
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Observe that both expressions result in the same value. This was expected, as by the 
definition, (𝑃𝑃𝑃𝑃)(−2) = 𝑃𝑃(−2) ∙ 𝑄𝑄(−2). 

b. Using the definition of the product function as well as the perfect square formula, we
have

(𝑄𝑄𝑄𝑄)(𝑥𝑥) = 𝑄𝑄(𝑥𝑥) ∙ 𝑄𝑄(𝑥𝑥) = [𝑄𝑄(𝑥𝑥)]2 = (3𝑥𝑥 + 2)2 = 𝟗𝟗𝒙𝒙𝟐𝟐 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟒𝟒 

Therefore, (𝑄𝑄𝑄𝑄)(1) = 9 ∙ 12 + 12 ∙ 1 + 4 = 9 + 12 + 4 = 𝟐𝟐𝟐𝟐. 

c. Since (𝑃𝑃𝑃𝑃)(𝑥𝑥) = 3𝑥𝑥3 − 10𝑥𝑥2 − 8𝑥𝑥, as shown in the solution to Example 7a, then
(𝑃𝑃𝑃𝑃)(𝑘𝑘) = 3𝑘𝑘3 − 10𝑘𝑘2 − 8𝑘𝑘. Therefore,

2(𝑃𝑃𝑃𝑃)(𝑘𝑘) = 2[3𝑘𝑘3 − 10𝑘𝑘2 − 8𝑘𝑘] = 𝟔𝟔𝒌𝒌𝟑𝟑 − 𝟐𝟐𝟐𝟐𝒌𝒌𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 

P.2  Exercises

1. Decide whether each expression has been simplified correctly. If not, correct it.

a. 𝑥𝑥2 ∙ 𝑥𝑥4 = 𝑥𝑥8 b. −2𝑥𝑥2 = 4𝑥𝑥2 c. (5𝑥𝑥)3 = 53𝑥𝑥3

d. −�𝑥𝑥
5
�
2

= −𝑥𝑥2

25
e. (𝑎𝑎2)3 = 𝑎𝑎5 f. 45 ∙ 42 = 167

g. 65

32
= 23 h. 𝑥𝑥𝑦𝑦0 = 1 i. (−𝑥𝑥2𝑦𝑦)3 = −𝑥𝑥6𝑦𝑦3

Simplify each expression. 

2. 3𝑥𝑥2 ∙ 5𝑥𝑥3 3. −2𝑦𝑦3 ∙ 4𝑦𝑦5 4. 3𝑥𝑥3(−5𝑥𝑥4)

5. 2𝑥𝑥2𝑦𝑦5(7𝑥𝑥𝑦𝑦3) 6. (6𝑡𝑡4𝑠𝑠)(−3𝑡𝑡3𝑠𝑠5) 7. (−3𝑥𝑥2𝑦𝑦)3

8. 12𝑥𝑥3𝑦𝑦
4𝑥𝑥𝑦𝑦2

9. 15𝑥𝑥5𝑦𝑦2

−3𝑥𝑥2𝑦𝑦4
10. (−2𝑥𝑥5𝑦𝑦3)2

11. �4𝑎𝑎
2

𝑏𝑏
�
3

12. �−3𝑚𝑚
4

𝑛𝑛3
�
2

13. �−5𝑝𝑝
2𝑞𝑞

𝑝𝑝𝑞𝑞4
�
3

14. 3𝑎𝑎2(−5𝑎𝑎5)(−2𝑎𝑎)0 15. −3𝑎𝑎3𝑏𝑏(−4𝑎𝑎2𝑏𝑏4)(𝑎𝑎𝑎𝑎)0 16. (−2𝑝𝑝)2𝑝𝑝𝑞𝑞3

6𝑝𝑝2𝑞𝑞4

17. (−8𝑥𝑥𝑥𝑥)2𝑦𝑦3

4𝑥𝑥5𝑦𝑦4
18. �−3𝑥𝑥

4𝑦𝑦6

18𝑥𝑥6𝑦𝑦7
�
3

19. ((−2𝑥𝑥3𝑦𝑦)2)3

20. ((−𝑎𝑎2𝑏𝑏4)3)5 21. 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛−1 22. 3𝑎𝑎2𝑛𝑛𝑎𝑎1−𝑛𝑛

23. (5𝑎𝑎)2𝑏𝑏 24. (−73𝑥𝑥)4𝑦𝑦 25. −12𝑥𝑥𝑎𝑎+1

6𝑥𝑥𝑎𝑎−1

26. 25𝑥𝑥𝑎𝑎+𝑏𝑏

−5𝑥𝑥𝑎𝑎−𝑏𝑏
27. �𝑥𝑥𝑎𝑎+𝑏𝑏�

𝑎𝑎−𝑏𝑏
28. (𝑥𝑥2𝑦𝑦)𝑛𝑛
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Find each product. 

29. 8𝑥𝑥2𝑦𝑦3(−2𝑥𝑥5𝑦𝑦) 30. 5𝑎𝑎3𝑏𝑏5(−3𝑎𝑎2𝑏𝑏4) 31. 2𝑥𝑥(−3𝑥𝑥 + 5)

32. 4𝑦𝑦(1− 6𝑦𝑦) 33. −3𝑥𝑥4𝑦𝑦(4𝑥𝑥 − 3𝑦𝑦) 34. −6𝑎𝑎3𝑏𝑏(2𝑏𝑏 + 5𝑎𝑎)

35. 5𝑘𝑘2(3𝑘𝑘2 − 2𝑘𝑘 + 4) 36. 6𝑝𝑝3(2𝑝𝑝2 + 5𝑝𝑝 − 3) 37. (𝑥𝑥 + 6)(𝑥𝑥 − 5)

38. (𝑥𝑥 − 7)(𝑥𝑥 + 3) 39. (2𝑥𝑥 + 3)(3𝑥𝑥 − 2) 40. 3𝑝𝑝(5𝑝𝑝 + 1)(3𝑝𝑝 + 2)

41. 2𝑢𝑢2(𝑢𝑢 − 3)(3𝑢𝑢 + 5) 42. (2𝑡𝑡 + 3)(𝑡𝑡2 − 4𝑡𝑡 − 2) 43. (2𝑥𝑥 − 3)(3𝑥𝑥2 + 𝑥𝑥 − 5)

44. (𝑎𝑎2 − 2𝑏𝑏2)(𝑎𝑎2 − 3𝑏𝑏2) 45. (2𝑚𝑚2 − 𝑛𝑛2)(3𝑚𝑚2 − 5𝑛𝑛2) 46. (𝑥𝑥 + 5)(𝑥𝑥 − 5)

47. (𝑎𝑎 + 2𝑏𝑏)(𝑎𝑎 − 2𝑏𝑏) 48. (𝑥𝑥 + 4)(𝑥𝑥 + 4) 49. (𝑎𝑎 − 2𝑏𝑏)(𝑎𝑎 − 2𝑏𝑏)

50. (𝑥𝑥 − 4)(𝑥𝑥2 + 4𝑥𝑥 + 16) 51. (𝑦𝑦 + 3)(𝑦𝑦2 − 3𝑦𝑦 + 9)

52. (𝑥𝑥2 + 𝑥𝑥 − 2)(𝑥𝑥2 − 2𝑥𝑥 + 3) 53. (2𝑥𝑥2 + 𝑦𝑦2 − 2𝑥𝑥𝑥𝑥)(𝑥𝑥2 − 2𝑦𝑦2 − 𝑥𝑥𝑥𝑥) 

True or False? If it is false, show a counterexample by choosing values for a and b that would not satisfy the 
equation. 

54. (𝑎𝑎 + 𝑏𝑏)2 = 𝑎𝑎2 + 𝑏𝑏2 55. 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) 56. (𝑎𝑎 − 𝑏𝑏)2 = 𝑎𝑎2 + 𝑏𝑏2

57. (𝑎𝑎 + 𝑏𝑏)2 = 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2 58. (𝑎𝑎 − 𝑏𝑏)2 = 𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2 59. (𝑎𝑎 − 𝑏𝑏)3 = 𝑎𝑎3 − 𝑏𝑏3

Find each product. Use the difference of squares or the perfect square formula, if applicable. 

60. (2𝑝𝑝 + 3)(2𝑝𝑝 − 3)  61. (5𝑥𝑥 − 4)(5𝑥𝑥 + 4)    62. �𝑏𝑏 − 1
3
� �𝑏𝑏 + 1

3
� 

63. �1
2
𝑥𝑥 − 3𝑦𝑦� �1

2
𝑥𝑥 + 3𝑦𝑦� 64. (2𝑥𝑥𝑥𝑥 + 5𝑦𝑦3)(2𝑥𝑥𝑥𝑥 − 5𝑦𝑦3) 65. (𝑥𝑥2 + 7𝑦𝑦3)(𝑥𝑥2 − 7𝑦𝑦3)

66. (1.1𝑥𝑥 + 0.5𝑦𝑦)(1.1𝑥𝑥 − 0.5𝑦𝑦) 67. (0.8𝑎𝑎 + 0.2𝑏𝑏)(0.8𝑎𝑎 + 0.2𝑏𝑏) 68. (𝑥𝑥 + 6)2

69. (𝑥𝑥 − 3)2 70. (4𝑥𝑥 + 3𝑦𝑦)2 71. (5𝑥𝑥 − 6𝑦𝑦)2

72. �3𝑎𝑎 + 1
2
�
2

73. �2𝑛𝑛 − 1
3
�
2

74. (𝑎𝑎3𝑏𝑏2 − 1)2

75. (𝑥𝑥4𝑦𝑦2 + 3)2 76. (3𝑎𝑎2 + 4𝑏𝑏3)2 77. (2𝑥𝑥2 − 3𝑦𝑦3)2

78. 3𝑦𝑦(5𝑥𝑥𝑥𝑥3 + 2)(5𝑥𝑥𝑥𝑥3 − 2) 79. 2𝑎𝑎(2𝑎𝑎2 + 5𝑎𝑎𝑎𝑎)(2𝑎𝑎2 + 5𝑎𝑎𝑎𝑎) 80. 3𝑥𝑥(𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦3)2

81. (−𝑥𝑥𝑥𝑥 + 𝑥𝑥2)(𝑥𝑥𝑥𝑥 + 𝑥𝑥2) 82. (4𝑝𝑝2 + 3𝑝𝑝𝑝𝑝)(−3𝑝𝑝𝑝𝑝 + 4𝑝𝑝2) 83. (𝑥𝑥 + 1)(𝑥𝑥 − 1)(𝑥𝑥2 + 1)

84. (2𝑥𝑥 − 𝑦𝑦)(2𝑥𝑥 + 𝑦𝑦)(4𝑥𝑥2 + 𝑦𝑦2) 85. (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑏𝑏2) 86. (𝑎𝑎 + 𝑏𝑏 + 1)(𝑎𝑎 + 𝑏𝑏 − 1)

87. (2𝑥𝑥 + 3𝑦𝑦 − 5)(2𝑥𝑥 + 3𝑦𝑦 + 5) 88. (3𝑚𝑚 + 2𝑛𝑛)(3𝑚𝑚− 2𝑛𝑛)(9𝑚𝑚2 − 4𝑛𝑛2)

89. �(2𝑘𝑘 − 3) + ℎ�
2

90. �(4𝑥𝑥 + 𝑦𝑦)− 5�
2

91. �𝑥𝑥𝑎𝑎 + 𝑦𝑦𝑏𝑏��𝑥𝑥𝑎𝑎 − 𝑦𝑦𝑏𝑏��𝑥𝑥2𝑎𝑎 + 𝑦𝑦2𝑏𝑏� 92. �𝑥𝑥𝑎𝑎 + 𝑦𝑦𝑏𝑏��𝑥𝑥𝑎𝑎 − 𝑦𝑦𝑏𝑏��𝑥𝑥2𝑎𝑎 − 𝑦𝑦2𝑏𝑏�
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Use the difference of squares formula, (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2, to find each product. 

93. 101 ∙ 99 94. 198 ∙ 202 95. 505 ∙ 495

Find the area of each figure. Express it as a polynomial in descending powers of the variable x. 

96.     97.      98.  

For each pair of functions, 𝒇𝒇 and 𝒈𝒈, find the product function (𝒇𝒇𝒇𝒇)(𝒙𝒙). 

99. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥 − 6,   𝑔𝑔(𝑥𝑥) = −2 + 3𝑥𝑥 100. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 7𝑥𝑥 − 2,   𝑔𝑔(𝑥𝑥) = 6𝑥𝑥 + 5

101. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 5𝑥𝑥,   𝑔𝑔(𝑥𝑥) = 9 + 𝑥𝑥 − 𝑥𝑥2 102. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 − 4,   𝑔𝑔(𝑥𝑥) = 𝑥𝑥𝑛𝑛 + 1

Let  𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟒𝟒,  𝑸𝑸(𝒙𝒙) = 𝟐𝟐𝟐𝟐,  and  𝑹𝑹(𝒙𝒙) = 𝒙𝒙 − 𝟐𝟐. Find each of the following. 

103. (𝑃𝑃𝑃𝑃)(𝑥𝑥) 104. (𝑃𝑃𝑃𝑃)(𝑥𝑥) 105. (𝑃𝑃𝑃𝑃)(𝑎𝑎)

106. (𝑃𝑃𝑃𝑃)(−1) 107. (𝑃𝑃𝑃𝑃)(3) 108. (𝑃𝑃𝑃𝑃)(0)

109. (𝑄𝑄𝑄𝑄)(𝑥𝑥) 110. (𝑄𝑄𝑄𝑄) �1
2
� 111. (𝑄𝑄𝑄𝑄)(𝑎𝑎 + 1)

112. 𝑃𝑃(𝑎𝑎 − 1) 113. 𝑃𝑃(2𝑎𝑎 + 3) 114. 𝑃𝑃(1 + ℎ)− 𝑃𝑃(1)

Solve each problem. 

115. Squares with 𝑥𝑥 centimeters long sides are cut out from each corner of a rectangular piece of cardboard
measuring 50 cm by 70 cm. Then the flaps of the remaining cardboard are folded up to construct a box.
Find the volume 𝑉𝑉(𝑥𝑥) of the box in terms of the length 𝑥𝑥.

116. A rectangular flower-bed has a perimeter of 60 meters. If the rectangle is 𝑤𝑤 meters wide, write a
polynomial that can be used to determine the area 𝐴𝐴(𝑤𝑤) of the flower-bed in terms of 𝑤𝑤. 

2𝑥𝑥 + 3 

𝑥𝑥
−

5 

2𝑥𝑥 + 6 

𝑥𝑥 − 4 

3𝑥𝑥 − 1 

2𝑥𝑥 − 2 

2𝑥𝑥 
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P3 Division of Polynomials 

In this section we will discuss dividing polynomials. The 
result of division of polynomials is not always a polynomial. 
For example, 𝑥𝑥 + 1 divided by 𝑥𝑥 becomes 

𝑥𝑥 + 1
𝑥𝑥

=
𝑥𝑥
𝑥𝑥

+
1
𝑥𝑥

= 1 +
1
𝑥𝑥

, 

which is not a polynomial. Thus, the set of polynomials is not closed under the operation 
of division. However, we can perform division with remainders, mirroring the algorithm of 
division of natural numbers. We begin with dividing a polynomial by a monomial and then 
by another polynomial.  

Division of Polynomials by Monomials 

To divide a polynomial by a monomial, we divide each term of the polynomial by the 
monomial, and then simplify each quotient. In other words, we use the reverse process of 
addition of fractions, as illustrated below. 

 𝒂𝒂 + 𝒃𝒃
𝒅𝒅

=
𝒂𝒂
𝒅𝒅

+
𝒃𝒃
𝒅𝒅

Dividing Polynomials by Monomials 

Divide and simplify.  

a. (6𝑥𝑥3 + 15𝑥𝑥2 − 2𝑥𝑥) ÷ (3𝑥𝑥) b. 𝑥𝑥𝑦𝑦2−8𝑥𝑥2𝑦𝑦+6𝑥𝑥3𝑦𝑦2

−2𝑥𝑥𝑦𝑦2

a. (6𝑥𝑥3 + 15𝑥𝑥2 − 2𝑥𝑥) ÷ (3𝑥𝑥) = 6𝑥𝑥3+15𝑥𝑥2−2𝑥𝑥
3𝑥𝑥

= 6𝑥𝑥3

3𝑥𝑥
+ 15𝑥𝑥2

3𝑥𝑥
− 2𝑥𝑥

3𝑥𝑥
= 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟓𝟓𝟓𝟓 − 𝟐𝟐

𝟑𝟑
 

b. 𝑥𝑥𝑦𝑦2−8𝑥𝑥2𝑦𝑦+6𝑥𝑥3𝑦𝑦2

−2𝑥𝑥𝑦𝑦2
= − 𝑥𝑥𝑦𝑦2

2𝑥𝑥𝑦𝑦2
+ 8𝑥𝑥2𝑦𝑦

2𝑥𝑥𝑦𝑦2
− 6𝑥𝑥3𝑦𝑦2

2𝑥𝑥𝑦𝑦2
= −𝟏𝟏

𝟐𝟐
+ 𝟒𝟒𝟒𝟒

𝒚𝒚
− 𝟑𝟑𝒙𝒙𝟐𝟐

Division of Polynomials by Polynomials 

To divide a polynomial by another polynomial, we follow an algorithm similar to the long 
division algorithm used in arithmetic. For example, observe the steps taken in the long 
division algorithm when dividing 158 by 13 and the corresponding steps when dividing 
𝑥𝑥2 + 5𝑥𝑥 + 8 by 𝑥𝑥 + 3. 

Step 1: Place the dividend under the long division symbol and the divisor in front of this 
symbol. 

13  ) 158 𝑥𝑥 + 3���
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  )  𝑥𝑥2 + 5𝑥𝑥 + 8���������
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

Solution 
2 5 2 

3 4 2 
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Remember:  Both polynomials should be written in decreasing order of powers. Also, 
any missing terms after the leading term should be displayed with a zero coefficient. This 
will ensure that the terms in each column are of the same degree. 

Step 2: Divide the first term of the dividend by the first term of the divisor and record the 
quotient above the division symbol. 

 1
13�  ) 15� 8             𝑥𝑥                    ���������

  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

  
𝑥𝑥⏟ + 3  )  𝑥𝑥2� + 5𝑥𝑥 + 8 

Step 3: Multiply the quotient from Step 2 by the divisor and write the product under the 
dividend, lining up the columns with the same degree terms. 

 1
13  ) 158

 13
 

𝑥𝑥 
𝑥𝑥 + 3���  ) 𝑥𝑥2 + 5𝑥𝑥 + 8

 𝑥𝑥2 + 3𝑥𝑥
 

Step 4: Underline and subtract by adding opposite terms in each column. We suggest 
recording the new sign in a circle, so that it is clear what is being added. 

 1
13  ) 158
− 13

2

𝑥𝑥 
𝑥𝑥 + 3  ) 𝑥𝑥2 + 5𝑥𝑥 + 8

− (𝑥𝑥2 + 3𝑥𝑥)
 2𝑥𝑥

Step 5: Drop the next term (or digit) and repeat the algorithm until the degree of the 
remainder is lower than the degree of the divisor. 

 12
13  ) 158
− 13

28
−26

2

𝑥𝑥  +  2 
𝑥𝑥 + 3  ) 𝑥𝑥2 + 5𝑥𝑥 + 8

− (𝑥𝑥2 + 3𝑥𝑥)

 
2𝑥𝑥 + 8 

−(2𝑥𝑥 + 6)
 2

 

In the example of long division of numbers, we have 158 = 13 ∙ 12 + 2. 
So, the quotient can be written as  158

13
= 𝟏𝟏𝟏𝟏 + 𝟐𝟐

𝟏𝟏𝟏𝟏
. 

In the example of long division of polynomials, we have 

𝑥𝑥2 + 5𝑥𝑥 + 8 = (𝑥𝑥 + 3) ∙ (𝑥𝑥  +  2) + 2. 

So, the quotient can be written as  
 𝑥𝑥2

 
+5𝑥𝑥+8

𝑥𝑥+3
= 𝒙𝒙 + 𝟐𝟐 + 𝟐𝟐

𝒙𝒙+𝟑𝟑
. 

Generally, if 𝑃𝑃, 𝐷𝐷, 𝑄𝑄, and 𝑅𝑅 are polynomials, such that 𝑃𝑃(𝑥𝑥) = 𝐷𝐷(𝑥𝑥) ∙ 𝑄𝑄(𝑥𝑥) + 𝑅𝑅(𝑥𝑥), then 
the ratio of polynomials 𝑃𝑃 and 𝐷𝐷 can be written as 

𝑷𝑷(𝒙𝒙)
𝑫𝑫(𝒙𝒙)

= 𝑸𝑸(𝒙𝒙) +
𝑹𝑹(𝒙𝒙)
𝑫𝑫(𝒙𝒙)

, 

⊝ 

⊝ 

⊝ 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
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 where 𝑄𝑄(𝑥𝑥) is the quotient polynomial, and 𝑅𝑅(𝑥𝑥) is the remainder from the division of 
𝑃𝑃(𝑥𝑥) by the divisor 𝐷𝐷(𝑥𝑥). 

Observe:  The degree of the remainder must be lower than the degree of the divisor, as 
otherwise, we could apply the division algorithm one more time. 

Dividing Polynomials by Polynomials 

Divide. 

a. (3𝑥𝑥3 − 2𝑥𝑥2 + 5) ÷ (𝑥𝑥2 − 3) b. 2𝑝𝑝3+2𝑝𝑝+3𝑝𝑝2

5+2𝑝𝑝

a. When writing the polynomials in the long division format, we use a zero placeholder
term in place of the missing linear terms in both the dividend and the divisor. So, we
have

𝟑𝟑𝟑𝟑  −   𝟐𝟐 
𝑥𝑥2 + 0𝑥𝑥 − 3  ) 3𝑥𝑥3  −  2𝑥𝑥2  +  0𝑥𝑥 + 5

− ( 3𝑥𝑥3  +  0𝑥𝑥2 − 9𝑥𝑥)

−2𝑥𝑥2  +  9𝑥𝑥 + 5
− (−2𝑥𝑥2  −  0𝑥𝑥 + 6)

        𝟗𝟗𝟗𝟗 − 𝟏𝟏

Thus, (3𝑥𝑥3 − 2𝑥𝑥2 + 5) ÷ (𝑥𝑥2 − 3) = 3𝑥𝑥 − 2 + 9𝑥𝑥−1
𝑥𝑥2−3

. 

b. To perform this division, we arrange both polynomials in decreasing order of powers,
and replace the constant term in the dividend with a zero. So, we have

 𝒑𝒑𝟐𝟐 −   𝒑𝒑  +   𝟕𝟕
𝟐𝟐
 

2𝑝𝑝 + 5  ) 2𝑝𝑝3 +  3𝑝𝑝2 + 2𝑝𝑝 +  0

− ( 2𝑝𝑝3 + 5𝑝𝑝2)

−2𝑝𝑝2 + 2𝑝𝑝
− (−2𝑝𝑝2 − 5𝑝𝑝)

7𝑝𝑝 + 0 
− �7𝑝𝑝 + 35

2
� 

− 𝟑𝟑𝟑𝟑
𝟐𝟐

Thus,  2𝑝𝑝
3+2𝑝𝑝+3𝑝𝑝2

5+2𝑝𝑝
=  𝑝𝑝2 − 𝑝𝑝 + 7

2
+

− 35
2

2𝑝𝑝+5
= 𝒑𝒑𝟐𝟐 − 𝒑𝒑 + 𝟕𝟕

𝟐𝟐
− 𝟑𝟑𝟑𝟑

𝟒𝟒𝟒𝟒+𝟏𝟏𝟏𝟏
. 

Observe in the above answer that 
− 352
2𝑝𝑝+5

 is written in a simpler form, − 35
4𝑝𝑝+10

. This is 

because  
− 352
2𝑝𝑝+5

= − 35
2
∙ 1
2𝑝𝑝+5

= − 35
4𝑝𝑝+10

. 

Solution 

⊝ 

⊝ 

⊝ 

⨁ 

⨁ 
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Quotient Functions 

Similarly as in the case of polynomials, we can define quotients of functions. 

Definition 3.1 Suppose 𝑓𝑓 and 𝑔𝑔 are functions of 𝑥𝑥 with the corresponding domains 𝐷𝐷𝑓𝑓 and 𝐷𝐷𝑔𝑔. 

Then the quotient function, denoted  𝒇𝒇
𝒈𝒈
, is defined as

�
𝒇𝒇
𝒈𝒈
� (𝒙𝒙) =

𝒇𝒇(𝒙𝒙)
𝒈𝒈(𝒙𝒙). 

The domain of the quotient function is the intersection of the domains of the two 
functions, 𝐷𝐷𝑓𝑓 and 𝐷𝐷𝑔𝑔, excluding the 𝑥𝑥-values for which 𝑔𝑔(𝑥𝑥) = 0. So, 

𝑫𝑫𝒇𝒇
𝒈𝒈

= 𝑫𝑫𝒇𝒇 ∩ 𝑫𝑫𝒈𝒈\{𝒙𝒙|𝒈𝒈(𝒙𝒙) = 𝟎𝟎} 

Dividing Polynomial Functions 

Suppose 𝑃𝑃(𝑥𝑥) = 2𝑥𝑥2 − 𝑥𝑥 − 6  and 𝑄𝑄(𝑥𝑥) = 𝑥𝑥 − 2. Find the following: 

a.  �𝑃𝑃
𝑄𝑄
� (𝑥𝑥) and �𝑃𝑃

𝑄𝑄
� (−3), 

b. �𝑃𝑃
𝑄𝑄
� (2) and �𝑃𝑃

𝑄𝑄
� (2𝑎𝑎), 

c. domain of  𝑃𝑃
𝑄𝑄

. 

a. By Definition 3.1,  �𝑃𝑃
𝑄𝑄
� (𝑥𝑥) = 𝑃𝑃(𝑥𝑥)

𝑄𝑄(𝑥𝑥)
= 2𝑥𝑥2−𝑥𝑥−6

𝑥𝑥−2
= 𝟐𝟐𝟐𝟐+ 𝟑𝟑 

So, �𝑃𝑃
𝑄𝑄
� (−3) = 2(−3) + 3 = −𝟑𝟑. One can verify that the same value is found by 

evaluating 𝑃𝑃(−3)
𝑄𝑄(−3)

.

b. Since the equation  (2𝑥𝑥+3)(𝑥𝑥−2)
𝑥𝑥−2

= 2𝑥𝑥 + 3 is true only for 𝑥𝑥 ≠ 2, the simplified formula 

�𝑃𝑃
𝑄𝑄
� (𝑥𝑥) = 2𝑥𝑥 + 3 cannot be used to evaluate �𝑃𝑃

𝑄𝑄
� (2). However, by Definition 3.1, we have 

�
𝑃𝑃
𝑄𝑄�

(2) =
𝑃𝑃(2)
𝑄𝑄(2) =

2(2)2 − (2)− 6
(2) − 2 =

8 − 2− 6
0 =

0
0 = 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 

To evaluate �𝑃𝑃
𝑄𝑄
� (2𝑎𝑎), we first notice that if 𝑎𝑎 ≠ 1, then 2𝑎𝑎 ≠ 2. So, we can use the 

simplified formula �𝑃𝑃
𝑄𝑄
� (𝑥𝑥) = 2𝑥𝑥 + 3  and evaluate �𝑃𝑃

𝑄𝑄
� (2𝑎𝑎) = 2(2𝑎𝑎) + 3 = 𝟒𝟒𝟒𝟒 + 𝟑𝟑 

for all 𝒂𝒂 ≠ 𝟏𝟏. 

c. The domain of any polynomial is the set of all real numbers. So, the domain of  𝑃𝑃
𝑄𝑄

 is

the set of all real numbers except for the 𝑥𝑥-values for which the denominator 𝑄𝑄(𝑥𝑥) =

Solution 

�𝑃𝑃
𝑄𝑄
� (2) is undefined, 
so 2 is not in the 

domain of  
𝑃𝑃
𝑄𝑄

Notice that this 
equation holds only 

for 𝑥𝑥 ≠ 2. 
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𝑥𝑥 − 2 is equal to zero. Since the solution to the equation 𝑥𝑥 − 2 = 0 is 𝑥𝑥 = 2, then the 
value 2 must be excluded from the set of all real numbers. Therefore, 𝑫𝑫𝑷𝑷

𝑸𝑸
= ℝ  \  {𝟐𝟐}. 

P.3  Exercises

1. True or False? The quotient in a division of a six-degree polynomial by a second-degree polynomial is a
third-degree polynomial. Justify your answer.

2. True or False? The remainder in a division of a polynomial by a second-degree polynomial is a first-degree
polynomial. Justify your answer.

Divide. 

3. 20𝑥𝑥3−15𝑥𝑥2+5𝑥𝑥
5𝑥𝑥

4. 27𝑦𝑦4+18𝑦𝑦2−9𝑦𝑦
9𝑦𝑦

5. 8𝑥𝑥2𝑦𝑦2−24𝑥𝑥𝑥𝑥
4𝑥𝑥𝑥𝑥

6. 5𝑐𝑐3𝑑𝑑+10𝑐𝑐2𝑑𝑑2−15𝑐𝑐𝑑𝑑3

5𝑐𝑐𝑐𝑐
7. 9𝑎𝑎5−15𝑎𝑎4+12𝑎𝑎3

−3𝑎𝑎2
8. 20𝑥𝑥3𝑦𝑦2+44𝑥𝑥2𝑦𝑦3−24𝑥𝑥2𝑦𝑦

−4𝑥𝑥2𝑦𝑦

9. 64𝑥𝑥3−72𝑥𝑥2+12𝑥𝑥
8𝑥𝑥3

10. 4𝑚𝑚2𝑛𝑛2−21𝑚𝑚𝑛𝑛3+18𝑚𝑚𝑛𝑛2

14𝑚𝑚2𝑛𝑛3
11. 12𝑎𝑎𝑏𝑏2𝑐𝑐+10𝑎𝑎2𝑏𝑏𝑏𝑏+18𝑎𝑎𝑎𝑎𝑐𝑐2

6𝑎𝑎2𝑏𝑏𝑏𝑏

Divide. 

12. (𝑥𝑥2 + 3𝑥𝑥 − 18) ÷ (𝑥𝑥 + 6) 13. (3𝑦𝑦2 + 17𝑦𝑦 + 10) ÷ (3𝑦𝑦 + 2)

14. (𝑥𝑥2 − 11𝑥𝑥 + 16) ÷ (𝑥𝑥 + 8) 15. (𝑡𝑡2 − 7𝑡𝑡 − 9) ÷ (𝑡𝑡 − 3)

16. 6𝑦𝑦3−𝑦𝑦2−10
3𝑦𝑦+4

17. 4𝑎𝑎3+6𝑎𝑎2+14
2𝑎𝑎+4

18. 4𝑥𝑥3+8𝑥𝑥2−11𝑥𝑥+3
4𝑥𝑥+1

19. 10𝑧𝑧3−26𝑧𝑧2+17𝑧𝑧−13
5𝑧𝑧−3

20. 2𝑥𝑥3+4𝑥𝑥2−𝑥𝑥+2
𝑥𝑥2+2𝑥𝑥−1

21. 3𝑥𝑥3−2𝑥𝑥2+5𝑥𝑥−4
𝑥𝑥2−𝑥𝑥+3

22. 4𝑘𝑘4+6𝑘𝑘3+3𝑘𝑘−1
2𝑘𝑘2+1

23. 9𝑘𝑘4+12𝑘𝑘3−4𝑘𝑘−1
3𝑘𝑘2−1

24. 2𝑝𝑝3+7𝑝𝑝2+9𝑝𝑝+3
2𝑝𝑝+2

25. 5𝑡𝑡2+19𝑡𝑡+7
4𝑡𝑡+12

26. 𝑥𝑥4−4𝑥𝑥3+5𝑥𝑥2−3𝑥𝑥+2
𝑥𝑥2+3

27. 𝑝𝑝3−1
𝑝𝑝−1

28. 𝑥𝑥3+1
𝑥𝑥+1

29. 𝑦𝑦4+16
𝑦𝑦+2

30. 𝑥𝑥5−32
𝑥𝑥−2

For each pair of polynomials, 𝑃𝑃(𝑥𝑥) and 𝐷𝐷(𝑥𝑥), find such polynomials 𝑄𝑄(𝑥𝑥) and 𝑅𝑅(𝑥𝑥) that 
𝑷𝑷(𝒙𝒙) = 𝑸𝑸(𝒙𝒙) ∙ 𝑫𝑫(𝒙𝒙) + 𝑹𝑹(𝒙𝒙). 

31. 𝑃𝑃(𝑥𝑥) = 4𝑥𝑥3 − 4𝑥𝑥2 + 13𝑥𝑥 − 2 and 𝐷𝐷(𝑥𝑥) = 2𝑥𝑥 − 1

32. 𝑃𝑃(𝑥𝑥) = 3𝑥𝑥3 − 2𝑥𝑥2 + 3𝑥𝑥 − 5 and 𝐷𝐷(𝑥𝑥) = 3𝑥𝑥 − 2
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For each pair of functions, 𝒇𝒇 and 𝒈𝒈, find the quotient function �𝒇𝒇
𝒈𝒈
� (𝒙𝒙) and state its domain. 

33. 𝑓𝑓(𝑥𝑥) = 6𝑥𝑥2 − 4𝑥𝑥,   𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 34. 𝑓𝑓(𝑥𝑥) = 6𝑥𝑥2 + 9𝑥𝑥,   𝑔𝑔(𝑥𝑥) = −3𝑥𝑥

35. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 36,   𝑔𝑔(𝑥𝑥) = 𝑥𝑥 + 6 36. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 25,   𝑔𝑔(𝑥𝑥) = 𝑥𝑥 − 5

37. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 𝑥𝑥 − 3,   𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 − 3 38. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 𝑥𝑥 − 4,   𝑔𝑔(𝑥𝑥) = 3𝑥𝑥 + 4

39. 𝑓𝑓(𝑥𝑥) = 8𝑥𝑥3 + 125,   𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 + 5 40. 𝑓𝑓(𝑥𝑥) = 64𝑥𝑥3 − 27,   𝑔𝑔(𝑥𝑥) = 4𝑥𝑥 − 3

Let  𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟒𝟒,  𝑸𝑸(𝒙𝒙) = 𝟐𝟐𝟐𝟐,  and  𝑹𝑹(𝒙𝒙) = 𝒙𝒙 − 𝟐𝟐. Find each of the following. If the value can’t be 
evaluated, say DNE (does not exist). 

41. �𝑅𝑅
𝑄𝑄
� (𝑥𝑥) 42. �𝑃𝑃

𝑅𝑅
� (𝑥𝑥) 43. �𝑅𝑅

𝑃𝑃
� (𝑥𝑥) 

44. �𝑅𝑅
𝑄𝑄
� (2) 45. �𝑅𝑅

𝑄𝑄
� (0) 46. �𝑃𝑃

𝑅𝑅
� (3) 

47. �𝑅𝑅
𝑃𝑃
� (−2) 48. �𝑅𝑅

𝑃𝑃
� (2) 49. �𝑃𝑃

𝑅𝑅
� (𝑎𝑎), for 𝑎𝑎 ≠ 2 

50. �𝑅𝑅
𝑄𝑄
� �3

2
� 51. 1

2
�𝑄𝑄
𝑅𝑅
� (𝑥𝑥) 52. �𝑄𝑄

𝑅𝑅
� (𝑎𝑎 − 1) 

Solve each problem. 

53. The area 𝐴𝐴 of a rectangle is 3𝑥𝑥2 + 7𝑥𝑥 − 6 and its width 𝑊𝑊 is 𝑥𝑥 + 3.
a. Find a polynomial that represents the length 𝐿𝐿 of the rectangle.
b. Find the length of the rectangle if the width is 7 meters.

54. The area 𝐴𝐴 of a triangle is 6𝑥𝑥2 − 13𝑥𝑥 + 5. Find the height ℎ of the triangle whose base is
3𝑥𝑥 − 5. What is the height of such a triangle if its base is 7 centimeters?

3𝑥𝑥 − 5 

ℎ 

𝑥𝑥 + 3 

𝐿𝐿 
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P4 Graphs of Basic Polynomial Functions 

In this section, we will examine graphs of basic polynomial functions, such as constant, 
linear, quadratic, and cubic functions.  

Graphs of Basic Polynomial Functions 

Since polynomials are functions, they can be evaluated for different 𝑥𝑥-values and graphed 
in a system of coordinates. How do polynomial functions look like? Below, we graph 
several basic polynomial functions up to the third degree, and observe their shape, domain, 
and range. 

Let us start with a constant function, which is defined by a zero degree polynomial, such 
as 𝑓𝑓(𝑥𝑥) = 1. In this example, for any real 𝑥𝑥-value, the corresponding 𝑦𝑦-value is constantly 
equal to 1. So, the graph of this function is a horizontal line with the 𝑦𝑦-intercept at 1. 

Domain: ℝ 
Range: {1} 

Generally, the graph of a constant function, 𝒇𝒇(𝒙𝒙) = 𝒄𝒄, is a 
horizontal line with the 𝑦𝑦-intercept at 𝑐𝑐. The domain of this 
function is ℝ and the range is {𝑐𝑐}. 

The basic first degree polynomial function is the identity function given by the formula 
𝒇𝒇(𝒙𝒙) = 𝒙𝒙. Since both coordinates of any point satisfying this equation are the same, the 
graph of the identity function is the diagonal line, as shown below. 

Domain: ℝ 
Range: ℝ 

Generally, the graph of any first degree polynomial function, 
𝒇𝒇(𝒙𝒙) = 𝒎𝒎𝒎𝒎 + 𝒃𝒃 with 𝑚𝑚 ≠ 0, is a slanted line. So, the domain 
and range of such function is ℝ. 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 

1 
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The basic second degree polynomial function is the squaring function given by the 
formula 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐. The shape of the graph of this function is refered to as the basic 
parabola. The reader is encouraged to observe the relations between the five points 
calculated in the table of values below. 

Domain: ℝ 
Range:  [0,∞) 

Generally, the graph of any second degree polynomial function, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 
with 𝑎𝑎 ≠ 0, is a parabola. The domain of such function is ℝ and the range depends on how 
the parabola is directed, with arms up or down. 

The basic third degree polynomial function is the cubic function, given by the formula 
𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑. The graph of this function has a shape of a ‘snake’. The reader is encouraged 
to observe the relations between the five points calculated in the table of values below. 

Domain: ℝ 
Range:  ℝ 

Generally, the graph of a third degree polynomial function, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟑𝟑 + 𝒃𝒃𝒙𝒙𝟐𝟐 + 𝒄𝒄𝒄𝒄 + 𝒅𝒅 
with 𝑎𝑎 ≠ 0, has a shape of a ‘snake’ with different size waves in the middle. The domain 
and range of such function is ℝ. 

𝒙𝒙 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 
−𝟐𝟐 𝟒𝟒 
−𝟏𝟏 𝟏𝟏 
𝟎𝟎 𝟎𝟎 
𝟏𝟏 𝟏𝟏 
𝟐𝟐 𝟒𝟒 

𝒙𝒙 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 
−𝟐𝟐 −𝟖𝟖
−𝟏𝟏 −𝟏𝟏
𝟎𝟎 𝟎𝟎 
𝟏𝟏 𝟏𝟏 
𝟐𝟐 𝟖𝟖 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 

1 

vertex 
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𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 

1 

center 

sy
m

m
et

ry
 

ab
ou

t t
he

 
or

ig
in

 



Section P4 |   27 

 Graphs of Basic Polynomial Functions 

Graphing Polynomial Functions 

Graph each function using a table of values. Give the domain and range of each function 
by observing its graph. Then, on the same grid, graph the corresponding basic polynomial 
function. Observe and name the transformation(s) that can be applied to the basic shape in 
order to obtain the desired function. 

a. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥 b. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 c. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 2

a. The graph of 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥 is a line passing through the origin and falling from left to
right, as shown below in solid green.

Domain of f: ℝ 
Range of f: ℝ 

Observe that to obtain the green line, we multiply 𝑦𝑦-coordinates of the orange line by 
a factor of −2. Such a transformation is called a dilation in the 𝒚𝒚-axis by a factor of 
−𝟐𝟐. This dilation can also be achieved by applying a symmetry in the 𝒙𝒙-axis first,
and then stretching the resulting graph in the 𝒚𝒚-axis by a factor of 𝟐𝟐.

b. The graph of 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 is a parabola with a vertex at (−2, 0), and its arms are
directed upwards as shown below in solid green.

Domain: ℝ 
Range: [0,∞) 

Observe that to obtain the solid green shape, it is enough to move the graph of the 
basic parabola by two units to the left. This transformation is called a horizontal 
translation by two units to the left. The translation to the left reflects the fact that the 
vertex of the parabola  𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 is located at 𝑥𝑥 + 2 = 0, which is equivalent 
to 𝑥𝑥 = −2. 

𝒙𝒙 𝒇𝒇(𝒙𝒙) = −𝟐𝟐𝟐𝟐 
−𝟏𝟏 2 
𝟎𝟎 0 
𝟏𝟏 −2

𝒙𝒙 𝒇𝒇(𝒙𝒙) = (𝒙𝒙 + 𝟐𝟐)𝟐𝟐 
−𝟒𝟒 4 
−𝟑𝟑 1 
−𝟐𝟐 0 
−𝟏𝟏 1 
𝟎𝟎 4 

Solution 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 

1 

vertex 
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𝑓𝑓(𝑥𝑥) 

𝑥𝑥 −2

4 
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c. The graph of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 2 has the shape of a basic cubic function with a center at
(0,−2).

Domain: ℝ 
Range: ℝ 

Observe that the solid green graph can be obtained by shifting the graph of the basic 
cubic function by two units down. This transformation is called a vertical translation 
by two units down. 

P.4  Exercises

1. True or False? The graph of 𝑥𝑥2 + 3 is the same shape as a basic parabola with a vertex at (3,0).

Graph each function and state its domain and range. 

2. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥 + 3 3. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥 − 4 4. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 4

5. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2 6. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥2 7. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 + 1

8. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)2 − 2 9. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 + 1 10. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)3

Guess the transformations needed to apply to the graph of a basic parabola 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 to obtain the graph of the 
given function 𝑔𝑔(𝑥𝑥). Then graph both 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) on the same grid and confirm the the original guess. 

11. 𝑔𝑔(𝑥𝑥) = −𝑥𝑥2 12. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 − 3 13. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 + 2

14. 𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 2)2 15. 𝑔𝑔(𝑥𝑥) = (𝑥𝑥 − 3)2 16. 𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 2)2 − 1

 Attributions 

p.169 Roller Coaster in a Park by Priscilla Du Preez / Unsplash Licence

𝒙𝒙 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 − 𝟐𝟐 
−𝟐𝟐 −10
−𝟏𝟏 −3
𝟎𝟎 −2
𝟏𝟏 −1
𝟐𝟐 6 
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𝑓𝑓(𝑥𝑥) 

𝑥𝑥 2 

1 

https://unsplash.com/photos/FOsina4f7qM
https://unsplash.com/@priscilladupreez
https://unsplash.com/license
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Factoring 
Factoring is the reverse process of multiplication. Factoring polynomials in 
algebra has similar role as factoring numbers in arithmetic. Any number can 
be expressed as a product of prime numbers. For example, 6 = 2 ∙ 3. 
Similarly, any polynomial can be expressed as a product of prime 
polynomials, which are polynomials that cannot be factored any further. For 
example, 𝑥𝑥2 + 5𝑥𝑥 + 6 = (𝑥𝑥 + 2)(𝑥𝑥 + 3). Just as factoring numbers helps in 
simplifying or adding fractions, factoring polynomials is very useful in 

simplifying or adding algebraic fractions. In addition, it helps identify zeros of polynomials, which in turn allows 
for solving higher degree polynomial equations. 

In this chapter, we will examine the most commonly used factoring strategies with particular attention to special 
factoring. Then, we will apply these strategies in solving polynomial equations. 

F1 Greatest Common Factor and Factoring by Grouping 

Prime Factors 

When working with integers, we are often interested in their factors, particularly prime 
factors. Likewise, we might be interested in factors of polynomials. 

Definition 1.1 To factor a polynomial means to write the polynomial as a product of ‘simpler’ 
polynomials. For example, 

 5𝑥𝑥 + 10 = 5(𝑥𝑥 + 2),   or   𝑥𝑥2 − 9 = (𝑥𝑥 + 3)(𝑥𝑥 − 3). 

In the above definition, ‘simpler’ means polynomials of lower degrees or polynomials with 
coefficients that do not contain common factors other than 1 or −1. If possible, we would 
like to see the polynomial factors, other than monomials, having integral coefficients and 
a positive leading term. 

When is a polynomial factorization complete? 

In the case of natural numbers, the complete factorization means a factorization into prime 
numbers, which are numbers divisible only by their own selves and 1. We would expect 
that similar situation is possible for polynomials. So, which polynomials should we 
consider as prime?  

Observe that a polynomial such as −4𝑥𝑥 + 12 can be written as a product in many different 
ways, for instance 

−(4𝑥𝑥 + 12),   2(−2𝑥𝑥 + 6),   4(−𝑥𝑥 + 3),   −4(𝑥𝑥 − 3),   −12 �1
3
𝑥𝑥 + 1�,  etc. 

Since the terms of 4𝑥𝑥 + 12 and −2𝑥𝑥 + 6 still contain common factors different than 1 or 
−1, these polynomials are not considered to be factored completely, which means that they
should not be called prime. The next two factorizations, 4(−𝑥𝑥 + 3) and −4(𝑥𝑥 − 3) are
both complete, so both polynomials −𝑥𝑥 + 3 and  𝑥𝑥 − 3 should be considered as prime. But
what about the last factorization, −12 �1

3
𝑥𝑥 + 1�? Since the remaining binomial 1

3
𝑥𝑥 + 1 

does not have integral coefficients, such a factorization is not always desirable. 
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Factoring 

Here are some examples of prime polynomials:  

 any monomials such as −2𝑥𝑥2, 𝜋𝜋𝑟𝑟2, or 1
3
𝑥𝑥𝑥𝑥; 

 any linear polynomials with integral coefficients that have no common factors other
than 1 or −1, such as 𝑥𝑥 − 1 or 2𝑥𝑥 + 5;

 some quadratic polynomials with integral coefficients that cannot be factored into any
lower degree polynomials with integral coefficients, such as 𝑥𝑥2 + 1 or 𝑥𝑥2 + 𝑥𝑥 + 1.

For the purposes of this course, we will assume the following definition of a prime 
polynomial. 

Definition 1.2 A polynomial with integral coefficients is called prime if one of the following conditions 
is true 
- it is a monomial, or
- the only common factors of its terms are 𝟏𝟏 or −𝟏𝟏 and it cannot be factored into any

lower degree polynomials with integral coefficients.

Definition 1.3 A factorization of a polynomial with integral coefficients is complete if all of its factors 
are prime. 

Here is an example of a polynomial factored completely: 

−6𝑥𝑥3 − 10𝑥𝑥2 + 4𝑥𝑥 = −2𝑥𝑥(3𝑥𝑥 − 1)(𝑥𝑥 + 2)

In the next few sections, we will study several factoring strategies that will be helpful in 
finding complete factorizations of various polynomials. 

Greatest Common Factor 

The first strategy of factoring is to factor out the greatest common factor (GCF). 

Definition 1.4 The greatest common factor (GCF) of two or more terms is the largest expression that is 
a factor of all these terms. 

In the above definition, the “largest expression” refers to the expression with the most 
factors, disregarding their signs. 

To find the greatest common factor, we take the product of the least powers of each type of 
common factor out of all the terms. For example, suppose we wish to find the GCF of the 
terms  

6𝑥𝑥2𝑦𝑦3,  −18𝑥𝑥5𝑦𝑦, and 24𝑥𝑥4𝑦𝑦2. 

First, we look for the GCF of 6, 18, and 24, which is 6. Then, we take the lowest power 
out of 𝑥𝑥2, 𝑥𝑥5, and 𝑥𝑥4, which is 𝑥𝑥2. Finally, we take the lowest power out of 𝑦𝑦3, 𝑦𝑦, and 𝑦𝑦2, 
which is 𝑦𝑦. Therefore,  

GCF(6𝑥𝑥2𝑦𝑦3 ,   − 18𝑥𝑥5𝑦𝑦,   24𝑥𝑥4𝑦𝑦2) = 6𝑥𝑥2𝑦𝑦 

This GCF can be used to factor the polynomial 6𝑥𝑥2𝑦𝑦3 − 18𝑥𝑥5𝑦𝑦 + 24𝑥𝑥4𝑦𝑦2 by first seeing 
it as  

6𝑥𝑥2𝑦𝑦 ∙ 𝑦𝑦2 − 6𝑥𝑥2𝑦𝑦 ∙ 3𝑥𝑥3 + 6𝑥𝑥2𝑦𝑦 ∙ 4𝑥𝑥2𝑦𝑦, 
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and then, using the reverse distributing property, ‘pulling’ the 6𝑥𝑥2𝑥𝑥 out of the bracket to 
obtain 

6𝑥𝑥2𝑥𝑥(𝑥𝑥2 − 3𝑥𝑥3  + 4𝑥𝑥2𝑥𝑥). 

Note 1: Notice that since 1 and −1 are factors of any expression, the GCF is defined up 
to the sign. Usually, we choose the positive GCF, but sometimes it may be convenient to 
choose the negative GCF. For example, we can claim that 

GCF(−2𝑥𝑥,−4𝑦𝑦) = 2   or   GCF(−2𝑥𝑥,−4𝑦𝑦) = −2, 

depending on what expression we wish to leave after factoring the GCF out: 

−2𝑥𝑥 − 4𝑦𝑦 = 2⏟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐺𝐺𝐺𝐺𝐺𝐺

(−𝑥𝑥 − 2𝑦𝑦)�������
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  or  −2𝑥𝑥 − 4𝑦𝑦 = −2�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐺𝐺𝐺𝐺𝐺𝐺

(𝑥𝑥 + 2𝑦𝑦)�������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

Note 2: If the GCF of the terms of a polynomial is equal to 1, we often say that these terms 
do not have any common factors. What we actually mean is that the terms do not have a 
common factor other than 1, as factoring 1 out does not help in breaking the original 
polynomial into a product of simpler polynomials. See Definition 1.1. 

Finding the Greatest Common Factor 

Find the greatest common factor for the given expressions. 

a. 6𝑥𝑥4(𝑥𝑥 + 1)3,   3𝑥𝑥3(𝑥𝑥 + 1), 9𝑥𝑥(𝑥𝑥 + 1)2 b. 4𝜋𝜋(𝑦𝑦 − 𝑥𝑥),   8𝜋𝜋(𝑥𝑥 − 𝑦𝑦) 
c. 𝑎𝑎𝑏𝑏2,   𝑎𝑎2𝑏𝑏,   𝑏𝑏, 𝑎𝑎 d. 3𝑥𝑥−1𝑦𝑦−3,   𝑥𝑥−2𝑦𝑦−2𝑧𝑧

a. Since GCF(6, 3, 9) = 3, the lowest power out of 𝑥𝑥4, 𝑥𝑥3, and 𝑥𝑥 is 𝑥𝑥, and the lowest
power out of (𝑥𝑥 + 1)3, (𝑥𝑥 + 1), and (𝑥𝑥 + 1)2 is (𝑥𝑥 + 1), then

GCF(6𝑥𝑥4(𝑥𝑥 + 1)3,   3𝑥𝑥3(𝑥𝑥 + 1),   9𝑥𝑥(𝑥𝑥 + 1)2) = 𝟑𝟑𝟑𝟑(𝒙𝒙 + 𝟏𝟏) 

b. Since 𝑦𝑦 − 𝑥𝑥 is opposite to 𝑥𝑥 − 𝑦𝑦, then 𝑦𝑦 − 𝑥𝑥 can be written as −(𝑥𝑥 − 𝑦𝑦). So 4, 𝜋𝜋, and
(𝑥𝑥 − 𝑦𝑦) is common for both expressions. Thus,

GCF�4𝜋𝜋(𝑦𝑦 − 𝑥𝑥),   8𝜋𝜋(𝑥𝑥 − 𝑦𝑦)� = 𝟒𝟒𝟒𝟒(𝒙𝒙 − 𝒚𝒚) 

Note: The greatest common factor is unique up to its sign. Notice that in the above 
example, we could write 𝑥𝑥 − 𝑦𝑦 as −(𝑦𝑦 − 𝑥𝑥) and choose the GCF to be 4𝜋𝜋(𝑦𝑦 − 𝑥𝑥). 

c. The terms 𝑎𝑎𝑏𝑏2, 𝑎𝑎2𝑏𝑏, 𝑏𝑏, and  𝑎𝑎 have no common factor other than 1, so

GCF(𝑎𝑎𝑏𝑏2,   𝑎𝑎2𝑏𝑏,   𝑏𝑏,   𝑎𝑎) = 𝟏𝟏 

Solution 
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d. The lowest power out of 𝑥𝑥−1 and 𝑥𝑥−2 is 𝑥𝑥−2, and the lowest power out of 𝑦𝑦−3 and
𝑦𝑦−2 is 𝑦𝑦−3. Therefore,

GCF(3𝑥𝑥−1𝑦𝑦−3,   𝑥𝑥−2𝑦𝑦−2𝑧𝑧) = 𝒙𝒙−𝟐𝟐𝒚𝒚−𝟑𝟑 

Factoring out the Greatest Common Factor 

Factor each expression by taking the greatest common factor out. Simplify the factors, if 
possible. 

a. 54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3 b. 𝑎𝑎𝑎𝑎 − 𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1)

c. −𝑥𝑥(𝑥𝑥 − 5) + 𝑥𝑥2(5− 𝑥𝑥) − (𝑥𝑥 − 5)2 d. 𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3

a. To find the greatest common factor of 54 and 60, we can use the method of dividing
by any common factor, as presented below.

 
2 54, 60
3 27, 30

 9, 10
 

So, GCF(54, 60) = 2 ∙ 3 = 6. 

Since GCF(54𝑥𝑥2𝑦𝑦2, 60𝑥𝑥𝑦𝑦3) = 6𝑥𝑥𝑦𝑦2, we factor the 6𝑥𝑥𝑦𝑦2 out by dividing each term 
of the polynomial 54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3 by 6𝑥𝑥𝑦𝑦2, as below.  

54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3 

= 𝟔𝟔𝟔𝟔𝒚𝒚𝟐𝟐(𝟗𝟗𝟗𝟗 + 𝟏𝟏𝟏𝟏𝟏𝟏) 

Note: Since factoring is the reverse process of multiplication, it can be checked by 
finding the product of the factors. If the product gives us the original polynomial, the 
factorization is correct. 

b. First, notice that the polynomial has two terms, 𝑎𝑎𝑎𝑎 and −𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1). The greatest
common factor for these two terms is 𝑎𝑎𝑎𝑎, so we have

𝑎𝑎𝑎𝑎 − 𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1)   = 𝑎𝑎𝑎𝑎�𝟏𝟏 − 𝑎𝑎(𝑎𝑎 − 1)� 

= 𝑎𝑎𝑎𝑎(1− 𝑎𝑎2 + 𝑎𝑎) 

= 𝑎𝑎𝑎𝑎(−𝑎𝑎2 + 𝑎𝑎 + 1) 

= −𝒂𝒂𝒂𝒂�𝒂𝒂𝟐𝟐 − 𝒂𝒂 − 𝟏𝟏� 

Solution 

no more 
common factors 

for 9 and 10 

all common 
factors are listed 
in this column 

54𝑥𝑥2𝑦𝑦2

6𝑥𝑥𝑦𝑦2
= 9𝑥𝑥 

60𝑥𝑥𝑦𝑦3

6𝑥𝑥𝑦𝑦2
= 10𝑦𝑦 

remember to leave 1 
for the first term 

 simplify and arrange 
in decreasing powers 

     take the “−“ out 
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Note: Both factorizations, 𝑎𝑎𝑎𝑎(−𝑎𝑎2 + 𝑎𝑎 + 1) and −𝑎𝑎𝑎𝑎(𝑎𝑎2 − 𝑎𝑎 − 1) are correct. 
However, we customarily leave the polynomial in the bracket with a positive leading 
coefficient. 

c. Observe that if we write the middle term 𝑥𝑥2(5− 𝑥𝑥) as −𝑥𝑥2(𝑥𝑥 − 5) by factoring the
negative out of the (5− 𝑥𝑥), then (5 − 𝑥𝑥) is the common factor of all the terms of the
equivalent polynomial

−𝑥𝑥(𝑥𝑥 − 5) − 𝑥𝑥2(𝑥𝑥 − 5) − (𝑥𝑥 − 5)2.

Then notice that if we take −(𝑥𝑥 − 5) as the GCF, then the leading term of the 
remaining polynomial will be positive. So, we factor 

−𝑥𝑥(𝑥𝑥 − 5) + 𝑥𝑥2(5 − 𝑥𝑥) − (𝑥𝑥 − 5)2

= −𝑥𝑥(𝑥𝑥 − 5) − 𝑥𝑥2(𝑥𝑥 − 5) − (𝑥𝑥 − 5)2 

= −(𝑥𝑥 − 5)�𝑥𝑥 + 𝑥𝑥2 + (𝑥𝑥 − 5)� 

= −(𝒙𝒙 − 𝟓𝟓)�𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟓𝟓� 

d. The GCF(𝑥𝑥−1, 2𝑥𝑥−2, −𝑥𝑥−3) = 𝑥𝑥−3, as −3 is the lowest exponent of the common
factor 𝑥𝑥. So, we factor out 𝑥𝑥−3 as below.

𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3 

= 𝒙𝒙−𝟑𝟑 �𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏� 

 

To check if the factorization is correct, we multiply 

𝑥𝑥−3 (𝑥𝑥2 + 2𝑥𝑥 − 1) 

= 𝑥𝑥−3𝑥𝑥2 + 2𝑥𝑥−3𝑥𝑥 − 1𝑥𝑥−3 

= 𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3 

Since the product gives us the original polynomial, the factorization is correct. 

Factoring by Grouping 

Consider the polynomial 𝑥𝑥2 + 𝑥𝑥 + 𝑥𝑥𝑥𝑥 + 𝑦𝑦. It consists of four terms that do not have any 
common factors. Yet, it can still be factored if we group the first two and the last two terms. 
The first group of two terms contains the common factor of 𝑥𝑥 and the second group of two 
terms contains the common factor of 𝑦𝑦. Observe what happens when we factor each group. 

𝑥𝑥2 + 𝑥𝑥��� + 𝑥𝑥𝑥𝑥 + 𝑦𝑦���  

= 𝑥𝑥(𝑥𝑥 + 1) + 𝑦𝑦(𝑥𝑥 + 1) 

= (𝑥𝑥 + 1)(𝑥𝑥 + 𝑦𝑦) 

When referring to a 
common factor, we 

have in mind a 
common factor other 

than 1. 

 the exponent 2 is found by 
subtracting −3 from −1 

 the exponent 1 is found by 
subtracting −3 from −2 

add exponents 

 
now  (𝑥𝑥 + 1) is the 

common factor of the 
entire polynomial 

 simplify and arrange 
in decreasing powers 
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This method is called factoring by grouping, in particular, two-by-two grouping. 

Warning:  After factoring each group, make sure to write the “+” or “−“ between the terms. 
Failing to write these signs leads to the false impression that the polynomial is already 
factored. For example, if in the second line of the above calculations we would fail to write 
the middle “+”, the expression would look like a product 𝑥𝑥(𝑥𝑥 + 1) 𝑦𝑦(𝑥𝑥 + 1), which is not 
the case. Also, since the expression 𝑥𝑥(𝑥𝑥 + 1) + 𝑦𝑦(𝑥𝑥 + 1) is a sum, not a product, we should 
not stop at this step. We need to factor out the common bracket (𝑥𝑥 + 1) to leave it as a 
product. 

A two-by-two grouping leads to a factorization only if the binomials, after factoring out 
the common factors in each group, are the same. Sometimes a rearrangement of terms is 
necessary to achieve this goal. 

For example, the attempt to factor 𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥 by grouping the first and the last 
two terms, 

𝑥𝑥3 − 15����� + 5𝑥𝑥2 − 3𝑥𝑥������� 

= (𝑥𝑥3 − 15) + 𝑥𝑥(5𝑥𝑥 − 3) 

does not lead us to a common binomial that could be factored out. 

However, rearranging terms allows us to factor the original polynomial in the following 
ways:  

𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥   or 𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥 

= 𝑥𝑥3 + 5𝑥𝑥2������� + −3𝑥𝑥 − 15������� = 𝑥𝑥3 − 3𝑥𝑥����� + 5𝑥𝑥2 − 15������� 

= 𝑥𝑥2(𝑥𝑥 + 5) − 3(𝑥𝑥 + 5) = 𝑥𝑥(𝑥𝑥2 − 3) + 5(𝑥𝑥2 − 3) 

= (𝑥𝑥 + 5)(𝑥𝑥2 − 3) = (𝑥𝑥2 − 3)(𝑥𝑥 + 5) 

Factoring by grouping applies to polynomials with more than three terms. However, not all 
such polynomials can be factored by grouping. For example, if we attempt to factor 𝑥𝑥3 +
𝑥𝑥2 + 2𝑥𝑥 − 2 by grouping, we obtain  

𝑥𝑥3 + 𝑥𝑥2����� + 2𝑥𝑥 − 2���  

= 𝑥𝑥2(𝑥𝑥 + 1) + 2(𝑥𝑥 − 1). 

Unfortunately, the expressions 𝑥𝑥 + 1 and 𝑥𝑥 − 1 are not the same, so there is no common 
factor to factor out. One can also check that no other rearrangments of terms allows us for 
factoring out a common binomial. So, this polynomial cannot be factored by grouping. 

Factoring by Grouping 

Factor each polynomial by grouping, if possible. Remember to check for the GCF first. 
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a. 2𝑥𝑥3 − 6𝑥𝑥2 + 𝑥𝑥 − 3 b. 5𝑥𝑥 − 5𝑦𝑦 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 
c. 2𝑥𝑥2𝑦𝑦 − 8 − 2𝑥𝑥2 + 8𝑦𝑦 d. 𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1

a. Since there is no common factor for all four terms, we will attempt the two-by-two
grouping method.

2𝑥𝑥3 − 6𝑥𝑥2������� + 𝑥𝑥 − 3��� 

= 2𝑥𝑥2(𝑥𝑥 − 3) + 1(𝑥𝑥 − 3) 

= (𝒙𝒙 − 𝟑𝟑)�𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟏𝟏� 

b. As before, there is no common factor for all four terms. The two-by-two grouping
method works only if the remaining binomials after factoring each group are exactly
the same. We can achieve this goal by factoring – 𝑎𝑎 , rather than 𝑎𝑎, out of the last two
terms. So,

5𝑥𝑥 − 5𝑦𝑦�����   −𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎������� 

= 5(𝑥𝑥 − 𝑦𝑦) − 𝑎𝑎(𝑥𝑥 − 𝑦𝑦) 

= (𝒙𝒙 − 𝒚𝒚)(𝟓𝟓  −  𝒂𝒂) 

c. Notice that 2 is the GCF of all terms, so we factor it out first.

2𝑥𝑥2𝑦𝑦 − 8 − 2𝑥𝑥2 + 8𝑦𝑦 

= 2(𝑥𝑥2𝑦𝑦 − 4 − 𝑥𝑥2 + 4𝑦𝑦) 

Then, observe that grouping the first and last two terms of the remaining polynomial 
does not help, as the two groups do not have any common factors. However, 
exchanging for example the second with the fourth term will help, as shown below.  

= 2(𝑥𝑥2𝑦𝑦 + 4𝑦𝑦�������  −𝑥𝑥2 − 4�����) 

= 2[𝑦𝑦(𝑥𝑥2 + 4) − (𝑥𝑥2 + 4)] 

= 𝟐𝟐�𝒙𝒙𝟐𝟐 + 𝟒𝟒�(𝒚𝒚 − 𝟏𝟏) 

d. The polynomial 𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1 does not have any common factors for all four terms.
Also, only the first two terms have a common factor. Unfortunately, when attempting
to factor using the two-by-two grouping method, we obtain

𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1 

= 𝑥𝑥(𝑥𝑥 − 1) + (𝑦𝑦 + 1), 

which cannot be factored, as the expressions 𝑥𝑥 − 1 and 𝑦𝑦 + 1 are different. 

One can also check that no other arrangement of terms allows for factoring of this 
polynomial by grouping. So, this polynomial cannot be factored by grouping. 

Solution 

 write the 1 for 
the second term 

 reverse signs when 
‘pulling’ a “−“ out 

 reverse signs when 
‘pulling’ a “−” out 

 
the square bracket is 

essential here because 
of the factor of 2 

now, there is no need for the square 
bracket as multiplication is associative 
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Factoring in Solving Formulas 

Solve 𝑎𝑎𝑎𝑎 = 3𝑎𝑎 + 5 for 𝑎𝑎. 

First, we move the terms containing the variable 𝑎𝑎 to one side of the equation, 

𝑎𝑎𝑎𝑎 = 3𝑎𝑎 + 5 
𝑎𝑎𝑎𝑎 − 3𝑎𝑎 = 5, 

and then factor 𝑎𝑎 out 
𝑎𝑎(𝑏𝑏 − 3) = 5. 

So, after dividing by 𝑏𝑏 − 3, we obtain  𝒂𝒂 = 𝟓𝟓
𝒃𝒃−𝟑𝟑

. 

F.1  Exercises

In problems 1-2, state whether the given sentence is true or false. 

1. The polynomial 6𝑥𝑥 + 8𝑦𝑦 is prime.

2. The GCF of the terms of the polynomial 3(𝑥𝑥 − 2) + 𝑥𝑥(2− 𝑥𝑥) is (𝑥𝑥 − 2)(2− 𝑥𝑥).

3. Observe the two factorizations of the polynomial 1
2
𝑥𝑥 − 3

4
𝑦𝑦  performed by different students: 

Student 𝐴𝐴:   1
2
𝑥𝑥 − 3

4
𝑦𝑦 = 1

2
(𝑥𝑥 − 3

2
𝑦𝑦) Student 𝐵𝐵: 1

2
𝑥𝑥 − 3

4
𝑦𝑦 = 1

4
(2𝑥𝑥 − 3𝑦𝑦) 

Are the two factorizations correct? Which one is preferable, and why? 

Find the GCF with a positive coefficient for the given expressions. 

4. 8𝑥𝑥𝑥𝑥, 10𝑥𝑥𝑥𝑥, −14𝑥𝑥𝑥𝑥 5. 21𝑎𝑎3𝑏𝑏6, −35𝑎𝑎7𝑏𝑏5, 28𝑎𝑎5𝑏𝑏8

6. 4𝑥𝑥(𝑥𝑥 − 1), 3𝑥𝑥2(𝑥𝑥 − 1) 7. −𝑥𝑥(𝑥𝑥 − 3)2,   𝑥𝑥2(𝑥𝑥 − 3)(𝑥𝑥 + 2)

8. 9(𝑎𝑎 − 5),   12(5 − 𝑎𝑎) 9. (𝑥𝑥 − 2𝑦𝑦)(𝑥𝑥 − 1),   (2𝑦𝑦 − 𝑥𝑥)(𝑥𝑥 + 1)

10. −3𝑥𝑥−2𝑦𝑦−3,   6𝑥𝑥−3𝑦𝑦−5 11. 𝑥𝑥−2(𝑥𝑥 + 2)−2, −𝑥𝑥−4(𝑥𝑥 + 2)−1

Factor out the greatest common factor. Leave the remaining polynomial with a positive leading coeficient. 
Simplify the factors, if possible. 

12. 9𝑥𝑥2 − 81𝑥𝑥 13. 8𝑘𝑘3 + 24𝑘𝑘 14. 6𝑝𝑝3 − 3𝑝𝑝2 − 9𝑝𝑝4

15. 6𝑎𝑎3 − 36𝑎𝑎4 + 18𝑎𝑎2 16. −10𝑟𝑟2𝑠𝑠2 + 15𝑟𝑟4𝑠𝑠2 17. 5𝑥𝑥2𝑦𝑦3 − 10𝑥𝑥3𝑦𝑦2

18. 𝑎𝑎(𝑥𝑥 − 2) + 𝑏𝑏(𝑥𝑥 − 2) 19. 𝑎𝑎(𝑦𝑦2 − 3) − 2(𝑦𝑦2 − 3)

20. (𝑥𝑥 − 2)(𝑥𝑥 + 3) + (𝑥𝑥 − 2)(𝑥𝑥 + 5) 21. (𝑛𝑛 − 2)(𝑛𝑛 + 3) + (𝑛𝑛 − 2)(𝑛𝑛 − 3)

Solution 
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22. 𝑦𝑦(𝑥𝑥 − 1) + 5(1 − 𝑥𝑥) 23. (4𝑥𝑥 − 𝑦𝑦) − 4𝑥𝑥(𝑦𝑦 − 4𝑥𝑥)

24. 4(3 − 𝑥𝑥)2 − (3− 𝑥𝑥)3 + 3(3− 𝑥𝑥) 25. 2(𝑝𝑝 − 3) + 4(𝑝𝑝 − 3)2 − (𝑝𝑝 − 3)3

Factor out the least power of each variable. 

26. 3𝑥𝑥−3 + 𝑥𝑥−2 27. 𝑘𝑘−2 + 2𝑘𝑘−4 28. 𝑥𝑥−4 − 2𝑥𝑥−3 + 7𝑥𝑥−2

29. 3𝑝𝑝−5 + 𝑝𝑝−3 − 2𝑝𝑝−2 30. 3𝑥𝑥−3𝑦𝑦 − 𝑥𝑥−2𝑦𝑦2 31. −5𝑥𝑥−2𝑦𝑦−3 + 2𝑥𝑥−1𝑦𝑦−2

Factor by grouping, if possible. 

32. 20 + 5𝑥𝑥 + 12𝑦𝑦 + 3𝑥𝑥𝑥𝑥 33. 2𝑎𝑎3 + 𝑎𝑎2 − 14𝑎𝑎 − 7 34. 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏 

35. 2𝑥𝑥𝑥𝑥 − 𝑥𝑥2𝑦𝑦 + 6− 3𝑥𝑥 36. 3𝑥𝑥2 + 4𝑥𝑥𝑥𝑥 − 6𝑥𝑥𝑥𝑥 − 8𝑦𝑦2 37. 𝑥𝑥3 − 𝑥𝑥𝑥𝑥 + 𝑦𝑦2 − 𝑥𝑥2𝑦𝑦 

38. 3𝑝𝑝2 + 9𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝 − 3𝑞𝑞2 39. 3𝑥𝑥2 − 𝑥𝑥2𝑦𝑦 − 𝑦𝑦𝑧𝑧2 + 3𝑧𝑧2 40. 2𝑥𝑥3 − 𝑥𝑥2 + 4𝑥𝑥 − 2

41. 𝑥𝑥2𝑦𝑦2 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑦𝑦2 − 𝑏𝑏𝑥𝑥2 42. 𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎 43. 𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑥𝑥 + 𝑥𝑥 + 𝑦𝑦 

44. 𝑥𝑥𝑥𝑥 − 6𝑦𝑦 + 3𝑥𝑥 − 18 45. 𝑥𝑥𝑛𝑛𝑦𝑦 − 3𝑥𝑥𝑛𝑛 + 𝑦𝑦 − 5 46. 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 2𝑎𝑎𝑛𝑛 + 𝑥𝑥𝑛𝑛 + 2

Factor completely. Remember to check for the GCF first. 

47. 5𝑥𝑥 − 5𝑎𝑎𝑎𝑎 + 5𝑎𝑎𝑎𝑎𝑎𝑎 − 5𝑏𝑏𝑏𝑏 48. 6𝑟𝑟𝑟𝑟 − 14𝑠𝑠 + 6𝑟𝑟 − 14

49. 𝑥𝑥4(𝑥𝑥 − 1) + 𝑥𝑥3(𝑥𝑥 − 1) − 𝑥𝑥2 + 𝑥𝑥 50. 𝑥𝑥3(𝑥𝑥 − 2)2 + 2𝑥𝑥2(𝑥𝑥 − 2) − (𝑥𝑥 + 2)(𝑥𝑥 − 2)

51. One of possible factorizations of the polynomial 4𝑥𝑥2𝑦𝑦5 − 8𝑥𝑥𝑦𝑦3  is  2𝑥𝑥𝑦𝑦3(2𝑥𝑥𝑦𝑦2 − 4). Is this a complete
factorization?

Use factoring the GCF strategy to solve each formula for the indicated variable. 

52. 𝐴𝐴 = 𝑷𝑷 + 𝑷𝑷𝑟𝑟,   for  𝑷𝑷    53. 𝑀𝑀 = 1
2
𝒑𝒑𝑞𝑞 + 1

2
𝒑𝒑𝑟𝑟,  for  𝒑𝒑 

54. 2𝒕𝒕 + 𝑐𝑐 = 𝑘𝑘𝒕𝒕,  for  𝒕𝒕 55. 𝑤𝑤𝒚𝒚 = 3𝒚𝒚 − 𝑥𝑥, for  𝒚𝒚
Write the area of each shaded region in factored form.

56. 57. 

58. 59. 

4𝑥𝑥 

𝑥𝑥 
𝑥𝑥 

𝑟𝑟 𝑅𝑅
𝑟𝑟 

𝑟𝑟 
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F2 Factoring Trinomials 

In this section, we discuss factoring trinomials. We start with factoring 
quadratic trinomials of the form 𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, then quadratic trinomials 
of the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, where 𝑎𝑎 ≠ 1, and finally trinomials reducible 
to quadratic by means of substitution. 

Factorization of Quadratic Trinomials 𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄  

Factorization of a quadratic trinomial 𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is the reverse process of the FOIL 
method of multiplying two linear binomials. Observe that  

(𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) = 𝑥𝑥2 + 𝑞𝑞𝑥𝑥 + 𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝 = 𝑥𝑥2 + (𝑝𝑝 + 𝑞𝑞)𝑥𝑥 + 𝑝𝑝𝑝𝑝 

So, to reverse this multiplication, we look for two numbers 𝑝𝑝 and 𝑞𝑞, such that the product 
𝑝𝑝𝑝𝑝 equals to the free term 𝑐𝑐 and the sum 𝑝𝑝 + 𝑞𝑞 equals to the middle coefficient 𝑏𝑏 of the 
trinomial. 

𝑥𝑥2 + 𝑏𝑏⏟
(𝒑𝒑+𝒒𝒒)

𝑥𝑥 + 𝑐𝑐⏟
𝒑𝒑𝒑𝒑

= (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) 

For example, to factor 𝑥𝑥2 + 5𝑥𝑥 + 6, we think of two integers that multiply to 6 and add to 
5. Such integers are 2 and 3, so 𝑥𝑥2 + 5𝑥𝑥 + 6 = (𝑥𝑥 + 2)(𝑥𝑥 + 3). Since multiplication is
commutative, the order of these factors is not important.

This could also be illustrated geometrically, using algebra tiles. 

The area of a square with the side length 𝑥𝑥 is equal to 𝑥𝑥2. The area of a rectangle with the 
dimensions 𝑥𝑥 by 1 is equal to 𝑥𝑥, and the area of a unit square is equal to 1. So, the trinomial 
𝑥𝑥2 + 5𝑥𝑥 + 6  can be represented as 

To factor this trinomial, we would like to rearrange these tiles to fulfill a rectangle. 

The area of such rectangle can be represented as the product of its length, (𝑥𝑥 + 3), and 
width, (𝑥𝑥 + 2) which becomes the factorization of the original trinomial.  

In the trinomial examined above, the signs of the middle and the last terms are both positive. 
To analyse how different signs of these terms influence the signs used in the factors, observe 
the next three examples. 

𝑥𝑥2 𝑥𝑥 

1 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 

1 1 1 1 1 1 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 

𝑥𝑥 
𝑥𝑥 1 1 

1 1 1 
1 

     𝑥𝑥       +   3                            
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  

 

                                          
�
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

  
 𝑥𝑥      +

 2 
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To factor 𝑥𝑥2 − 5𝑥𝑥 + 6,  we look for two in tegers that multiply to 6 and add to −5. Such 
integers are −2 and −3, so 𝑥𝑥2 − 5𝑥𝑥 + 6 = (𝑥𝑥 − 2)(𝑥𝑥 − 3). 

To factor 𝑥𝑥2 + 𝑥𝑥 − 6,  we  look fo r two in tegers th at mu ltiply to  −6 and add to 1. Such 
integers are −2 and 3, so 𝑥𝑥2 + 𝑥𝑥 − 6 = (𝑥𝑥 − 2)(𝑥𝑥 + 3). 

To factor 𝑥𝑥2 − 𝑥𝑥 − 6, we look for two integers that multiply to −6 and add to −1. Such 
integers are 2 and −3, so 𝑥𝑥2 − 𝑥𝑥 − 6 = (𝑥𝑥 + 2)(𝑥𝑥 − 3). 

Observation: A positive constant 𝒄𝒄 in a trinomial 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 tells us that the integers 
𝑝𝑝 and 𝑞𝑞 in the factorization (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) are both of the same sign and their sum is the 
middle coefficient 𝑏𝑏. In addition, if 𝑏𝑏 is positive, both 𝑝𝑝 and 𝑞𝑞 are positive, and if 𝑏𝑏 is 
negative, both 𝑝𝑝 and 𝑞𝑞 are negative. 

A negative constant 𝒄𝒄 in a trinomial 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 tells us that the integers 𝑝𝑝 and 𝑞𝑞 in the 
factorization (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) are of different signs and the difference of their absolute 
values is the middle coefficient 𝑏𝑏.  In addition, the integer whose absolute value is larger 
takes the sign of the middle coefficient 𝑏𝑏. 

These observations are summarized in the following Table of Signs. 

Assume that |𝑝𝑝| ≥ |𝑞𝑞|. 
sum 𝒃𝒃 product 𝒄𝒄 𝒑𝒑 𝒒𝒒 comments 

+ + + + 𝑏𝑏 is the sum of 𝑝𝑝 and 𝑞𝑞 
− + − − 𝑏𝑏 is the sum of 𝑝𝑝 and 𝑞𝑞 
+ − + − 𝑏𝑏 is the difference |𝑝𝑝| − |𝑞𝑞| 
− − − + 𝑏𝑏 is the difference |𝑞𝑞| − |𝑝𝑝| 

Factoring Trinomials with the Leading Coefficient Equal to 1 

Factor each trinomial, if possible. 

a. 𝑥𝑥2 − 10𝑥𝑥 + 24 b. 𝑥𝑥2 + 9𝑥𝑥 − 36
c. 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2 d. 𝑥𝑥2 + 7𝑥𝑥 + 9

a. To factor the trinomial 𝑥𝑥2 − 10𝑥𝑥 + 24, we look for two integers with a product of 24
and a sum of −10. The two integers are fairly easy to guess, −4 and −6. However, if
one wishes to follow a more methodical way of finding these numbers, one can list the
possible two-number factorizations of 24 and observe the sums of these numbers.

product = 𝟐𝟐𝟐𝟐 
(pairs of factors of 24) 

sum = −𝟏𝟏𝟏𝟏 
(sum of factors) 

𝟏𝟏 ∙ 𝟐𝟐𝟐𝟐 25 
𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏 14 
𝟑𝟑 ∙ 𝟖𝟖 11 
𝟒𝟒 ∙ 𝟔𝟔 10 

Solution 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩! 

For simplicity, the table 
doesn’t include signs of the 

integers. The signs are 
determined according to 

the Table of Signs. 
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Since the product is positive and the sum is negative, both integers must be negative. 
So, we take −4 and −6. 

Thus, 𝑥𝑥2 − 10𝑥𝑥 + 24 = (𝒙𝒙 − 𝟒𝟒)(𝒙𝒙 − 𝟔𝟔). The reader is encouraged to check this 
factorization by multiplying the obtained binomials. 

b. To factor the trinomial 𝑥𝑥2 + 9𝑥𝑥 − 36, we look for two integers with a product of −36
and a sum of 9. So, let us list the possible factorizations of 36 into two numbers and
observe the differences of these numbers.

product = −𝟑𝟑𝟑𝟑 
(pairs of factors of 36) 

sum = 𝟗𝟗 
(difference of factors) 

𝟏𝟏 ∙ 𝟑𝟑𝟑𝟑 35 
𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏 16 
𝟑𝟑 ∙ 𝟏𝟏𝟏𝟏 9 
𝟒𝟒 ∙ 𝟗𝟗 5 
𝟔𝟔 ∙ 𝟔𝟔 0 

Since the product is negative and the sum is positive, the integers are of different signs 
and the one with the larger absolute value assumes the sign of the sum, which is 
positive. So, we take 12 and −3. 

Thus, 𝑥𝑥2 + 9𝑥𝑥 − 36 = (𝒙𝒙 + 𝟏𝟏𝟏𝟏)(𝒙𝒙 − 𝟑𝟑). Again, the reader is encouraged to check 
this factorization by multiplying the obtained binomials. 

c. To factor the trinomial 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2, we look for two binomials of the form
(𝑥𝑥+ ?𝑦𝑦)(𝑥𝑥+ ?𝑦𝑦) where the question marks are two integers with a product of −40
and a sum of 39. Since the two integers are of different signs and the absolute values
of these integers differ by 39, the two integers must be −40 and 1.

Therefore, 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2 = (𝒙𝒙 − 𝟒𝟒𝟒𝟒𝟒𝟒)(𝒙𝒙 + 𝒚𝒚).

Suggestion: Create a table of pairs of factors only if guessing the two integers with the 
given product and sum becomes too difficult. 

d. When attempting to factor the trinomial 𝑥𝑥2 + 7𝑥𝑥 + 9, we look for a pair of integers
that would multiply to 9 and add to 7. There are only two possible factorizations of 9:
9 ∙ 1 and 3 ∙ 3. However, neither of the sums, 9 + 1 or 3 + 3, are equal to 7. So, there
is no possible way of factoring 𝑥𝑥2 + 7𝑥𝑥 + 9 into two linear binomials with integral
coefficients. Therefore, if we admit only integral coefficients, this polynomial is not
factorable.

Factorization of Quadratic Trinomials 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄  with 𝒂𝒂 ≠0 

Before discussing factoring quadratic trinomials with a leading coefficient different than 1, 
let us observe the multiplication process of two linear binomials with integral coefficients. 

(𝒎𝒎𝑥𝑥 + 𝑝𝑝)(𝒏𝒏𝑥𝑥 + 𝑞𝑞) = 𝑚𝑚𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑞𝑞𝑥𝑥 + 𝑛𝑛𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝 = 𝒂𝒂⏟
𝒎𝒎𝒎𝒎

𝑥𝑥2 + 𝒃𝒃⏟
(𝒎𝒎𝒒𝒒+𝒏𝒏𝒑𝒑)

𝑥𝑥 + 𝒄𝒄⏟
𝒑𝒑𝒑𝒑

 

This row contains the 
solution, so there is no 
need to list any of the 

subsequent rows. 
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To reverse this process, notice that this time, we are looking for four integers 𝑚𝑚, 𝑛𝑛, 𝑝𝑝, and 
𝑞𝑞 that satisfy the conditions 

𝑚𝑚𝑚𝑚 = 𝑎𝑎,   𝑝𝑝𝑝𝑝 = 𝑐𝑐,   𝑚𝑚𝑞𝑞 + 𝑛𝑛𝑝𝑝 = 𝑏𝑏, 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are the coefficients of the quadratic trinomial that needs to be factored. This 
produces a lot more possibilities to consider than in the guessing method used in the case 
of the leading coefficient equal to 1. However, if at least one of the outside coefficients, 𝑎𝑎 
or 𝑐𝑐, are prime, the guessing method still works reasonably well. 

For example, consider 2𝑥𝑥2 + 𝑥𝑥 − 6. Since the coefficient 𝑎𝑎 = 2 = 𝑚𝑚𝑚𝑚 is a prime number, 
there is only one factorization of 𝑎𝑎, which is 1 ∙ 2. So, we can assume that 𝑚𝑚 = 2 and 𝑛𝑛 =
1. Therefore,

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± |𝑝𝑝|)(𝑥𝑥 ∓ |𝑞𝑞|) 

Since the constant term 𝑐𝑐 = −6 = 𝑝𝑝𝑝𝑝 is negative, the binomial factors have different signs 
in the middle. Also, since 𝑝𝑝𝑝𝑝 is negative, we search for such 𝑝𝑝 and 𝑞𝑞 that the inside and 
outside products differ by the middle term 𝑏𝑏 = 𝑥𝑥, up to its sign. The only factorizations of 
6 are 1 ∙ 6 and  2 ∙ 3. So we try 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 1)(𝑥𝑥 ∓ 6) 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 6)(𝑥𝑥 ∓ 1) 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 2)(𝑥𝑥 ∓ 3) 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 3)(𝑥𝑥 ∓ 2) 

Then, since the difference between the inner and outer products should be positive, the 
larger product must be positive and the smaller product must be negative. So, we distribute 
the signs as below. 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 − 3)(𝑥𝑥 + 2) 

In the end, it is a good idea to multiply the product to check if it results in the original 
polynomial. We leave this task to the reader. 

What if the outside coefficients of the quadratic trinomial are both composite? Checking 
all possible distributions of coefficients 𝑚𝑚, 𝑛𝑛, 𝑝𝑝, and 𝑞𝑞 might be too cumbersome. Luckily, 
there is another method of factoring, called decomposition.  

𝑥𝑥 

12𝑥𝑥 
differs by 11𝑥𝑥 → too much 

6𝑥𝑥 
  2𝑥𝑥 

differs by 4𝑥𝑥 → still too much 

2𝑥𝑥 
  6𝑥𝑥 

differs by 4𝑥𝑥 → still too much 

3𝑥𝑥 
 4𝑥𝑥 

differs by 𝑥𝑥 → perfect! 

−3𝑥𝑥
4𝑥𝑥

 

Observe that these two trials 
can be disregarded at once 
as 2 is not a common factor 

of all the terms of the 
trinomial, while it is a 

common factor of the terms 
of one of the binomials. 
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The decomposition method is based on the reverse FOIL process. 
Suppose the polynomial 6𝑥𝑥2 + 19𝑥𝑥 + 15 factors into (𝑚𝑚𝑥𝑥 + 𝑝𝑝)(𝑛𝑛𝑥𝑥 + 𝑞𝑞). Observe that the 
FOIL multiplication of these two binomials results in the four term polynomial,  

𝑚𝑚𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑞𝑞𝑥𝑥 + 𝑛𝑛𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝, 

which after combining the two middle terms gives us the original trinomial. So, reversing 
these steps would lead us to the factored form of  6𝑥𝑥2 + 19𝑥𝑥 + 15.  

To reverse the FOIL process, we would like to: 

• Express the middle term, 19𝑥𝑥, as a sum of two terms,  𝑚𝑚𝑞𝑞𝑥𝑥 and 𝑛𝑛𝑝𝑝𝑥𝑥, such that the
product of their coefficients, 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝, is equal to the product of the outside
coefficients 𝑎𝑎𝑎𝑎 = 6 ∙ 15 = 90.

• Then, factor the four-term polynomial by grouping.

Thus, we are looking for two integers with the product of 90 and the sum of 19. One can 
check that 9 and 10 satisfy these conditions. Therefore,  

6𝑥𝑥2 + 19𝑥𝑥 + 15 

= 6𝑥𝑥2 + 9𝑥𝑥 + 10𝑥𝑥 + 15 

= 3𝑥𝑥(2𝑥𝑥 + 3) + 5(2𝑥𝑥 + 3) 

= (2𝑥𝑥 + 3)(3𝑥𝑥 + 5) 

Factoring Trinomials with the Leading Coefficient Different than 1 

Factor completely each trinomial.  

a. 6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 b. −6𝑦𝑦2 − 10 + 19𝑦𝑦 
c. 18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 d. 2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12

a. First, we factor out the GCF, which is 2𝑥𝑥. This gives us

6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 = 2𝑥𝑥(3𝑥𝑥2 + 7𝑥𝑥 + 2) 

The outside coefficients of the remaining trinomial are prime, so we can apply the 
guessing method to factor it further. The first terms of the possible binomial factors 
must be 3𝑥𝑥 and 𝑥𝑥 while the last terms must be 2 and 1. Since both signs in the trinomial 
are positive, the signs used in the binomial factors must be both positive as well. So, 
we are ready to give it a try: 

2𝑥𝑥(3𝑥𝑥 +   2  )(𝑥𝑥 +  1  )    or     2𝑥𝑥(3𝑥𝑥 +  1  )(𝑥𝑥 +   2  ) 

The first distribution of coefficients does not work as it would give us 2𝑥𝑥 + 3𝑥𝑥 = 5𝑥𝑥 
for the middle term. However, the second distribution works as 𝑥𝑥 + 6𝑥𝑥 = 7𝑥𝑥, which 
matches the middle term of the trinomial. So, 

6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 = 𝟐𝟐𝟐𝟐(𝟑𝟑𝟑𝟑+ 𝟏𝟏)(𝒙𝒙 + 𝟐𝟐) 

Solution 

This product is often 
referred to as the 

master product or 
the 𝒂𝒂𝒂𝒂-product. 

2𝑥𝑥 
 3𝑥𝑥 

𝑥𝑥 
 6𝑥𝑥 
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b. Notice that the trinomial is not arranged in decreasing order of powers of 𝑦𝑦. So, first,
we rearrange the last two terms to achieve the decreasing order. Also, we factor out
the −1, so that the leading term of the remaining trinomial is positive.

−6𝑦𝑦2 − 10 + 19𝑦𝑦 = −6𝑦𝑦2 + 19𝑦𝑦 − 10 = −(6𝑦𝑦2 − 19𝑦𝑦 + 10)

Then, since the outside coefficients are composite, we will use the decomposition 
method of factoring. The 𝑎𝑎𝑎𝑎-product equals to 60 and the middle coefficient equals to 
−19. So, we are looking for two integers that multiply to 60 and add to −19. The
integers that satisfy these conditions are −15 and −4. Hence, we factor

−(6𝑦𝑦2 − 19𝑦𝑦 + 10) 

= −(6𝑦𝑦2 − 15𝑦𝑦 − 4𝑦𝑦 + 10) 

= −[3𝑦𝑦(2𝑦𝑦 − 5) − 2(2𝑦𝑦 − 5)] 

= −(𝟐𝟐𝟐𝟐 − 𝟓𝟓)(𝟑𝟑𝟑𝟑 − 𝟐𝟐) 

c. There is no common factor to take out of the polynomial 18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2. So,
we will attempt to factor it into two binomials of the type (𝑚𝑚𝑎𝑎 ± 𝑝𝑝𝑏𝑏)(𝑛𝑛𝑎𝑎 ∓ 𝑞𝑞𝑏𝑏), using
the decomposition method. The 𝑎𝑎𝑎𝑎-product equals −12 ∙ 18 = −2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 3 and
the middle coefficient equals −19. To find the two integers that multiply to the  𝑎𝑎𝑎𝑎-
product and add to −19, it is convenient to group the factors of the product

2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 3 

in such a way that the products of each group differ by 19. It turns out that grouping 
all the 2’s and all the 3’s satisfy this condition, as 8 and 27 differ by 19. Thus, the 
desired integers are −27 and 8, as the sum of them must be −19. So, we factor 

18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 

= 18𝑎𝑎2 − 27𝑎𝑎𝑎𝑎 + 8𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 

= 9𝑎𝑎(2𝑎𝑎 − 3𝑏𝑏) + 4𝑏𝑏(2𝑎𝑎 − 3𝑏𝑏) 

= (𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑)(𝟗𝟗𝟗𝟗 + 𝟒𝟒𝟒𝟒) 

d. To factor 2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12, first, we notice that treating the group (𝑥𝑥 + 3)
as another variable, say 𝑎𝑎, simplifies the problem to factoring the quadratic trinomial

2𝑎𝑎2 + 5𝑎𝑎 − 12 

This can be done by the guessing method. Since 

2𝑎𝑎2 + 5𝑎𝑎 − 12 = (2𝑎𝑎 − 3)(𝑎𝑎 + 4), 

then 
2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12 = [2(𝑥𝑥 + 3) − 3][(𝑥𝑥 + 3) + 4] 

= (2𝑥𝑥 + 6 − 3)(𝑥𝑥 + 3 + 4) 

= (𝟐𝟐𝟐𝟐 + 𝟑𝟑)(𝒙𝒙 + 𝟕𝟕) 

 remember to 
reverse the sign! 

 
the square bracket is 

essential because of the 
negative sign outside 

−3𝑎𝑎
8𝑎𝑎

IN
 F
O
R
M
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Note 1: Polynomials that can be written in the form 𝒂𝒂(    )𝟐𝟐 + 𝒃𝒃(    ) + 𝒄𝒄,  where 𝑎𝑎 ≠ 0 
and (    ) represents any nonconstant polynomial expression, are referred to as 
quadratic in form. To factor such polynomials, it is convenient to replace the 
expression in the bracket by a single variable, different than the original one. 
This was illustrated in Example 2d by substituting 𝑎𝑎 for (𝑥𝑥 + 3). However, when 
using this substitution method, we must remember to leave the final answer 
in terms of the original variable. So, after factoring, we replace 𝑎𝑎 back with 
(𝑥𝑥 + 3), and then simplify each factor. 

Note 2:  Some students may feel comfortable factoring polynomials quadratic in form 
directly, without using substitution. 

Application of Factoring in Geometry Problems 

Suppose that the area in square meters of a trapezoid is given by the 
polynomial 5𝑥𝑥2 − 9𝑥𝑥 − 2. If the two bases are 2𝑥𝑥 and (3𝑥𝑥 +  1) meters 
long, then what polynomial represents the height of the trapezoid?

Using the formula for the area of a trapezoid, we write the equation 
1
2
ℎ(𝑎𝑎 + 𝑏𝑏) = 5𝑥𝑥2 − 9𝑥𝑥 − 2 

Since 𝑎𝑎 + 𝑏𝑏 = 2𝑥𝑥 + (3𝑥𝑥 + 1) = 5𝑥𝑥 + 1, then we have 
1
2
ℎ(5𝑥𝑥 + 1) = 5𝑥𝑥2 − 9𝑥𝑥 − 2, 

which after factoring the right-hand side gives us 
1
2
ℎ(5𝑥𝑥 + 1) = (5𝑥𝑥 + 1)(𝑥𝑥 − 2). 

To find ℎ, it is enough to divide the above equation by the common factor (5𝑥𝑥 + 1) and 
then multiply it by 2. So,  

ℎ = 2(𝑥𝑥 − 2) = 𝟐𝟐𝟐𝟐 − 𝟒𝟒. 

F.2  Exercises

1. If 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 has no monomial factor, can either of the possible binomial factors have a monomial factor?

2. Is (2𝑥𝑥 + 5)(2𝑥𝑥 − 4) a complete factorization of the polynomial 4𝑥𝑥2 + 2𝑥𝑥 − 20?

Solution 

 2𝑥𝑥 

 3𝑥𝑥 + 1 

 ℎ 
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3. When factoring the polynomial −2𝑥𝑥2 − 7𝑥𝑥 + 15, students obtained the following answers:
(−2𝑥𝑥 + 3)(𝑥𝑥 + 5),  (2𝑥𝑥 − 3)(−𝑥𝑥 − 5),  or  −(2𝑥𝑥 − 3)(𝑥𝑥 + 5)

Which of the above factorizations are correct?

4. Is the polynomial 𝑥𝑥2 − 𝑥𝑥 + 2 factorable or is it prime?

Fill in the missing factor. 

5. 𝑥𝑥2 − 4𝑥𝑥 + 3 = (  )(𝑥𝑥 − 1)  6. 𝑥𝑥2 + 3𝑥𝑥 − 10 = (  )(𝑥𝑥 − 2) 

7. 𝑥𝑥2 − 𝑥𝑥𝑥𝑥 − 20𝑦𝑦2 = (𝑥𝑥 + 4𝑦𝑦)(  ) 8. 𝑥𝑥2 + 12𝑥𝑥𝑥𝑥 + 35𝑦𝑦2 = (𝑥𝑥 + 5𝑦𝑦)(  )  

Factor, if possible. 

9. 𝑥𝑥2 + 7𝑥𝑥 + 12 10. 𝑥𝑥2 − 12𝑥𝑥 + 35 11. 𝑦𝑦2 + 2𝑦𝑦 − 48

12. 𝑎𝑎2 − 𝑎𝑎 − 42 13. 𝑥𝑥2 + 2𝑥𝑥 + 3 14. 𝑝𝑝2 − 12𝑝𝑝 − 27

15. 𝑚𝑚2 − 15𝑚𝑚 + 56 16. 𝑦𝑦2 + 3𝑦𝑦 − 28 17. 18 − 7𝑛𝑛 − 𝑛𝑛2

18. 20 + 8𝑝𝑝 − 𝑝𝑝2 19. 𝑥𝑥2 − 5𝑥𝑥𝑥𝑥 + 6𝑦𝑦2 20. 𝑝𝑝2 + 9𝑝𝑝𝑝𝑝 + 20𝑞𝑞2

Factor completely. 

21. −𝑥𝑥2 + 4𝑥𝑥 + 21 22. −𝑦𝑦2 + 14𝑦𝑦 + 32 23. 𝑛𝑛4 − 13𝑛𝑛3 − 30𝑛𝑛2

24. 𝑦𝑦3 − 15𝑦𝑦2 + 54𝑦𝑦 25. −2𝑥𝑥2 + 28𝑥𝑥 − 80 26. −3𝑥𝑥2 − 33𝑥𝑥 − 72

27. 𝑥𝑥4𝑦𝑦 + 7𝑥𝑥2𝑦𝑦 − 60𝑦𝑦 28. 24𝑎𝑎𝑎𝑎2 + 6𝑎𝑎2𝑏𝑏2 − 3𝑎𝑎3𝑏𝑏2 29. 40 − 35𝑡𝑡15 − 5𝑡𝑡30

30. 𝑥𝑥4𝑦𝑦2 + 11𝑥𝑥2𝑦𝑦 + 30 31. 64𝑛𝑛 − 12𝑛𝑛5 − 𝑛𝑛9 32. 24 − 5𝑥𝑥𝑎𝑎 − 𝑥𝑥2𝑎𝑎 

33. If a polynomial 𝑥𝑥2 + 𝑏𝑏 𝑥𝑥 + 36 with an unknown coefficient 𝑏𝑏 by the middle term can be factored into two 
binomials with integral coefficients, then what are the possible values of 𝑏𝑏? 

Fill in the missing factor. 

34. 2𝑥𝑥2 + 7𝑥𝑥 + 3 = (  )(𝑥𝑥 + 3) 35. 3𝑥𝑥2 − 10𝑥𝑥 + 8 = (  )(𝑥𝑥 − 2) 

36. 4𝑥𝑥2 + 8𝑥𝑥 − 5 = (2𝑥𝑥 − 1)(  ) 37. 6𝑥𝑥2 − 𝑥𝑥 − 15 = (2𝑥𝑥 + 3)(  ) 

Factor completely. 

38. 2𝑥𝑥2 − 5𝑥𝑥 − 3 39. 6𝑦𝑦2 − 𝑦𝑦 − 2 40. 4𝑚𝑚2 + 17𝑚𝑚 + 4

41. 6𝑡𝑡2 − 13𝑡𝑡 + 6 42. 10𝑥𝑥2 + 23𝑥𝑥 − 5 43. 42𝑛𝑛2 + 5𝑛𝑛 − 25

44. 3𝑝𝑝2 − 27𝑝𝑝 + 24 45. −12𝑥𝑥2 − 2𝑥𝑥 + 30 46. 6𝑥𝑥2 + 41𝑥𝑥𝑥𝑥 − 7𝑦𝑦2

47. 18𝑥𝑥2 + 27𝑥𝑥𝑥𝑥 + 10𝑦𝑦2 48. 8 − 13𝑎𝑎 + 6𝑎𝑎2 49. 15 − 14𝑛𝑛 − 8𝑛𝑛2
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50. 30𝑥𝑥4 + 3𝑥𝑥3 − 9𝑥𝑥2 51. 10𝑥𝑥3 − 6𝑥𝑥2 + 4𝑥𝑥4 52. 2𝑦𝑦6 + 7𝑥𝑥𝑦𝑦3 + 6𝑥𝑥2

53. 9𝑥𝑥2𝑦𝑦2 − 4 + 5𝑥𝑥𝑥𝑥 54. 16𝑥𝑥2𝑦𝑦3 + 3𝑦𝑦 − 16𝑥𝑥𝑦𝑦2 55. 4𝑝𝑝4 − 28𝑝𝑝2𝑞𝑞 + 49𝑞𝑞2

56. 4(𝑥𝑥 − 1)2 − 12(𝑥𝑥 − 1) + 9 57. 2(𝑎𝑎 + 2)2 + 11(𝑎𝑎 + 2) + 15 58. 4𝑥𝑥2𝑎𝑎 − 4𝑥𝑥𝑎𝑎 − 3

59. If a polynomial 3𝑥𝑥2 + 𝑏𝑏 𝑥𝑥 − 20 with an unknown coefficient 𝑏𝑏 by the middle term can be factored into 
two binomials with integral coefficients, then what are the possible values of 𝑏𝑏 ? 

60. The volume of a case of apples is 2𝑥𝑥3 − 3𝑥𝑥2 − 2𝑥𝑥 cubic feet, and the height of the
case is (𝑥𝑥 − 2) feet. Find a polynomial representing the area of the bottom of the
case?

61. Suppose the width of a rectangular runner carpet is (𝑥𝑥 + 5) feet. If the area of the
carpet is (3𝑥𝑥2 + 17𝑥𝑥 +  10) square feet, find the polynomial that represents the
length of the carpet.

𝑥𝑥
−

2 
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F3 Special Factoring and a General Strategy of Factoring 

Recall that in Section P2, we considered formulas that provide a shortcut for finding special 
products, such as a product of two conjugate binomials, 

(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐, 

or the perfect square of a binomial,  

(𝑎𝑎 ± 𝑏𝑏)2 = 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐. 

Since factoring reverses the multiplication process, these formulas can be used as shortcuts 
in factoring binomials of the form 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 (difference of squares), and trinomials of the 
form 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 (perfect square).  In this section, we will also introduce a formula 
for factoring binomials of the form 𝒂𝒂𝟑𝟑 ± 𝒃𝒃𝟑𝟑 (sum or difference of cubes). These special 
product factoring techniques are very useful in simplifying expressions or solving 
equations, as they allow for more efficient algebraic manipulations. 

At the end of this section, we give a summary of all the factoring strategies shown in this 
chapter.  

Difference of Squares 

Out of the special factoring formulas, the easiest one to use is the 
difference of squares,  

𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) 

Figure 3.1 shows a geometric interpretation of this formula. The area of 
the yellow square, 𝑎𝑎2, diminished by the area of the blue square, 𝑏𝑏2, can 
be rearranged to a rectangle with the length of (𝑎𝑎 + 𝑏𝑏) and the width of 
(𝑎𝑎 − 𝑏𝑏). 

To factor a difference of squares 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐, first, identify 𝒂𝒂 and 𝒃𝒃, which 
are the expressions being squared, and then, form two factors, the sum 
(𝒂𝒂 + 𝒃𝒃), and the difference (𝒂𝒂 − 𝒃𝒃), as illustrated in the example below. 

Factoring Differences of Squares 

Factor each polynomial completely. 

a. 25𝑥𝑥2 − 1 b. 3.6𝑥𝑥4 − 0.9𝑦𝑦6
c. 𝑥𝑥4 − 81 d. 16 − (𝑎𝑎 − 2)2

a. First, we rewrite each term of 25𝑥𝑥2 − 1 as a perfect square of an expression.

       𝑎𝑎         𝑏𝑏 

25𝑥𝑥2 − 1 = (5𝑥𝑥)2 − 12 

Then, treating 5𝑥𝑥 as the 𝑎𝑎 and 1 as the 𝑏𝑏 in the difference of squares formula 
𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏), we factor: 

Solution 

Figure 3.1 

 𝑎𝑎
 

 𝑏𝑏  
𝑎𝑎 − 𝑏𝑏   𝑏𝑏  

𝑎𝑎
−
𝑏𝑏 

𝑎𝑎 𝑎𝑎   +   𝑏𝑏 

 𝑎𝑎2  𝑏𝑏2  
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       𝑎𝑎2  −  𝑏𝑏2 =  (𝑎𝑎 +  𝑏𝑏)(𝑎𝑎 −  𝑏𝑏) 

25𝑥𝑥2 − 1 = (5𝑥𝑥)2 − 12 = (𝟓𝟓𝟓𝟓 + 𝟏𝟏)(𝟓𝟓𝟓𝟓 − 𝟏𝟏) 

b. First, we factor out 0.9 to leave the coefficients in a perfect square form. So,

3.6𝑥𝑥4 − 0.9𝑦𝑦6 = 0.9(4𝑥𝑥4 − 𝑦𝑦6) 

Then, after writing the terms of 4𝑥𝑥4 − 𝑦𝑦6 as perfect squares of expressions that 
correspond to 𝑎𝑎 and 𝑏𝑏 in the difference of squares formula 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏), 
we factor 

  𝑎𝑎             𝑏𝑏 

0.9(4𝑥𝑥4 − 𝑦𝑦6) = 0.9[(2𝑥𝑥2)2 − (𝑦𝑦3)2] = 𝟎𝟎.𝟗𝟗�𝟐𝟐𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟑𝟑��𝟐𝟐𝒙𝒙𝟐𝟐 − 𝒚𝒚𝟑𝟑� 

c. Similarly as in the previous two examples, 𝑥𝑥4 − 81 can be factored by following the
difference of squares pattern. So,

𝑥𝑥4 − 81 = (𝑥𝑥2)2 − (9)2 = (𝑥𝑥2 + 9)(𝑥𝑥2 − 9) 

However, this factorization is not complete yet. Notice that 𝑥𝑥2 − 9 is also a difference 
of squares, so the original polynomial can be factored further. Thus, 

𝑥𝑥4 − 81 = (𝑥𝑥2 + 9)(𝑥𝑥2 − 9) = �𝒙𝒙𝟐𝟐 + 𝟗𝟗�(𝒙𝒙 + 𝟑𝟑)(𝒙𝒙 − 𝟑𝟑) 

Attention: The sum of squares, 𝑥𝑥2 + 9, cannot be factored using real coefficients. 

Generally, except for a common factor, a quadratic binomial of the form 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 is not 
factorable over the real numbers. 

d. Following the difference of squares formula, we have

16 − (𝑎𝑎 − 2)2 = 42 − (𝑎𝑎 − 2)2 

= [4 + (𝑎𝑎 − 2)][4 − (𝑎𝑎 − 2)]  

= (4 + 𝑎𝑎 − 2)(4− 𝑎𝑎 + 2) work out the inner brackets 

= (𝟐𝟐 + 𝒂𝒂)(𝟔𝟔 − 𝒂𝒂) combine like terms

Perfect Squares 

Another frequently used special factoring formula is the perfect square of a sum or a 
difference. 

𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 
or 

𝒂𝒂𝟐𝟐 − 𝟐𝟐𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 − 𝒃𝒃)𝟐𝟐 

Figure 3.2 shows the geometric interpretation of the perfect square of a sum. We encourage 
the reader to come up with a similar interpretation of the perfect square of a difference. 

Remember to use 
brackets after the 

negative sign! 

Figure 3.2 

𝑎𝑎   +   𝑏𝑏 

 𝑎𝑎   +
  𝑏𝑏 𝑏𝑏2 𝑎𝑎𝑏𝑏 

𝑎𝑎2  𝑎𝑎𝑏𝑏 
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To factor a perfect square trinomial 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐, we find 𝒂𝒂 and 𝒃𝒃, which are the 
expressions being squared. Then, depending on the middle sign, we use 𝒂𝒂 and 𝒃𝒃 to form 
the perfect square of the sum (𝒂𝒂 + 𝒃𝒃)𝟐𝟐, or the perfect square of the difference (𝒂𝒂 − 𝒃𝒃)𝟐𝟐. 

Identifying Perfect Square Trinomials  

Decide whether the given polynomial is a perfect square. 

a. 9𝑥𝑥2 + 6𝑥𝑥 + 4 b. 9𝑥𝑥2 + 4𝑦𝑦2 − 12𝑥𝑥𝑥𝑥
c. 25𝑝𝑝4 + 40𝑝𝑝2 − 16 d. 49𝑦𝑦6 + 84𝑥𝑥𝑥𝑥3 + 36𝑥𝑥2

a. Observe that the outside terms of the trinomial 9𝑥𝑥2 + 6𝑥𝑥 + 4 are perfect squares, as
9𝑥𝑥2 = (3𝑥𝑥)2 and 4 = 22. So, the trinomial would be a perfect square if the middle
terms would equal 2 ∙ 3𝑥𝑥 ∙ 2 = 12𝑥𝑥. Since this is not the case, our trinomial is not a
perfect square.

Attention: Except for a common factor, trinomials of the type 𝒂𝒂𝟐𝟐 ± 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 are not 
factorable over the real numbers! 

b. First, we arrange the trinomial in decreasing order of the powers of 𝑥𝑥. So, we obtain
9𝑥𝑥2 − 12𝑥𝑥𝑥𝑥 + 4𝑦𝑦2. Then, since 9𝑥𝑥2 = (3𝑥𝑥)2, 4𝑦𝑦2 = (2𝑦𝑦)2, and the middle term
(except for the sign) equals 2 ∙ 3𝑥𝑥 ∙ 2𝑦𝑦 = 12𝑥𝑥𝑥𝑥, we claim that the trinomial is a perfect
square. Since the middle term is negative, this is the perfect square of a difference.
So, the trinomial 9𝑥𝑥2 − 12𝑥𝑥𝑥𝑥 + 4𝑦𝑦2 can be seen as

    𝑎𝑎2    −  2    𝑎𝑎     𝑏𝑏   +   𝑏𝑏2    = ( 𝑎𝑎 −  𝑏𝑏 )2 

(3𝑥𝑥)2 − 2 ∙ 3𝑥𝑥 ∙ 2𝑦𝑦 + (2𝑦𝑦)2 = (3𝑥𝑥 − 2𝑦𝑦)2 

c. Even though the coefficients of the trinomial 25𝑝𝑝4 + 40𝑝𝑝2 − 16 and the distribution
of powers seem to follow the pattern of a perfect square, the last term is negative,
which makes it not a perfect square.

d. Since 49𝑦𝑦6 = (7𝑦𝑦3)2, 36𝑥𝑥2 = (6𝑥𝑥)2, and the middle term equals 2 ∙ 7𝑦𝑦3 ∙ 6𝑥𝑥 =
84𝑥𝑥𝑥𝑥3, we claim that the trinomial is a perfect square. Since the middle term is
positive, this is the perfect square of a sum. So, the trinomial 49𝑦𝑦6 + 84𝑥𝑥𝑥𝑥3 + 36𝑥𝑥2

can be seen as
       𝑎𝑎2     +  2     𝑎𝑎      𝑏𝑏  +    𝑏𝑏2    = ( 𝑎𝑎    +   𝑏𝑏 )2 

(7𝑦𝑦3)2 + 2 ∙ 7𝑦𝑦3 ∙ 6𝑥𝑥 + (6𝑥𝑥)2 = (7𝑦𝑦3 + 6𝑥𝑥)2 

Factoring Perfect Square Trinomials 

Factor each polynomial completely. 

a. 25𝑥𝑥2 + 10𝑥𝑥 + 1 b. 𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2

c. 𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 d. −4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5

Solution 
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a. The outside terms of the trinomial 25𝑥𝑥2 + 10𝑥𝑥 + 1 are perfect squares of 5𝑎𝑎 and 1,
and the middle term equals 2 ∙ 5𝑥𝑥 ∙ 1 = 10𝑥𝑥, so we can follow the perfect square
formula. Therefore,

25𝑥𝑥2 + 10𝑥𝑥 + 1 = (𝟓𝟓𝟓𝟓+ 𝟏𝟏)𝟐𝟐 

b. The outside terms of the trinomial 𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2 are perfect squares of 𝑎𝑎 and 6𝑏𝑏,
and the middle term (disregarding the sign) equals 2 ∙ 𝑎𝑎 ∙ 6𝑏𝑏 = 12𝑎𝑎𝑎𝑎, so we can follow
the perfect square formula. Therefore,

𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2 = (𝒂𝒂 − 𝟔𝟔𝟔𝟔)𝟐𝟐 

c. Observe that the first three terms of the polynomial 𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 form a
perfect square of 𝑚𝑚 − 4 and the last term is a perfect square of 7𝑛𝑛. So, we can write

𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 = (𝑚𝑚 − 4)2 − (7𝑛𝑛)2 

Notice that this way we have formed a difference of squares. So we can factor it by 
following the difference of squares formula 

(𝑚𝑚− 4)2 − (7𝑛𝑛)2 = (𝒎𝒎− 𝟒𝟒 − 𝟕𝟕𝟕𝟕)(𝒎𝒎− 𝟒𝟒 + 𝟕𝟕𝟕𝟕) 

d. As in any factoring problem, first we check the polynomial −4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5
for a common factor, which is 4𝑦𝑦2.  To leave the leading term of this polynomial
positive, we factor out −4𝑦𝑦2. So, we obtain

−4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5

= −4𝑦𝑦2 (1 + 36𝑦𝑦6 − 12𝑦𝑦3) 

  = −4𝑦𝑦2 (36𝑦𝑦6 − 12𝑦𝑦3 + 1) 

 = −𝟒𝟒𝒚𝒚𝟐𝟐 �𝟔𝟔𝒚𝒚𝟑𝟑 − 𝟏𝟏�
𝟐𝟐
 

Sum or Difference of Cubes 

The last special factoring formula to discuss in this section is the 
sum or difference of cubes.  

𝒂𝒂𝟑𝟑 + 𝒃𝒃𝟑𝟑 = (𝒂𝒂 + 𝒃𝒃)�𝒂𝒂𝟐𝟐 − 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐� 
or 

𝒂𝒂𝟑𝟑 − 𝒃𝒃𝟑𝟑 = (𝒂𝒂 − 𝒃𝒃)�𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐� 

The reader is encouraged to confirm these formulas by multiplying 
the factors in the right-hand side of each equation. In addition, we 
offer a geometric visualization of one of these formulas, the 
difference of cubes, as shown in Figure 3.3. 

Solution 

 fold to the perfect 
square form 

 arrange the polynomial in 
decreasing powers 

 This is not in 
factored form yet! 

Figure 3.3 

𝑎𝑎3 − 𝑏𝑏3 = 𝑎𝑎2(𝑎𝑎 − 𝑏𝑏)+𝑎𝑎𝑎𝑎(𝑎𝑎 − 𝑏𝑏) + 𝑏𝑏2(𝑎𝑎 − 𝑏𝑏) 

𝑎𝑎 

𝑎𝑎 − 𝑏𝑏 𝑎𝑎 

𝑏𝑏 

𝑏𝑏 

𝑎𝑎 − 𝑏𝑏 

𝑎𝑎 − 𝑏𝑏 

𝑏𝑏 

𝑎𝑎 

𝑏𝑏3 

= (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎2+𝑎𝑎𝑎𝑎 + 𝑏𝑏2) 

𝑎𝑎3 
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Hints for memorization of the sum or difference of cubes formulas: 
• The binomial factor is a copy of the sum or difference of the terms that were originally

cubed.
• The trinomial factor follows the pattern of a perfect square, except that the middle term

is single, not doubled.
• The signs in the factored form follow the pattern Same-Opposite-Positive (SOP).

Factoring Sums or Differences of Cubes 

Factor each polynomial completely. 

a. 8𝑥𝑥3 + 1 b. 27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4
c. 2𝑛𝑛6 − 128 d. (𝑝𝑝 − 2)3 + 𝑞𝑞3

a. First, we rewrite each term of 8𝑥𝑥3 + 1 as a perfect cube of an expression.

       𝑎𝑎         𝑏𝑏 

8𝑥𝑥3 + 1 = (2𝑥𝑥)3 + 13 

Then, treating 2𝑥𝑥 as the 𝑎𝑎 and 1 as the 𝑏𝑏 in the sum of cubes formula 𝑎𝑎3 + 𝑏𝑏3 =
(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏2), we factor:  

 𝒂𝒂𝟑𝟑  +  𝒃𝒃𝟑𝟑 = (𝒂𝒂 +  𝒃𝒃) � 𝒂𝒂𝟐𝟐    −   𝒂𝒂    𝒃𝒃 + 𝒃𝒃𝟐𝟐� 

8𝑥𝑥3 + 1 = (2𝑥𝑥)3 + 13 = (2𝑥𝑥 + 1)((2𝑥𝑥)2 − 2𝑥𝑥 ∙ 1 + 12) 

 = (𝟐𝟐𝟐𝟐 + 𝟏𝟏)�𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟏𝟏� 

Notice that the trinomial 4𝑥𝑥2 − 2𝑥𝑥 + 1 is not factorable anymore. 

b. Since the two terms of the polynomial 27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 contain the common factor
𝑥𝑥𝑥𝑥, we factor it out and obtain

27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 = 𝑥𝑥𝑥𝑥(27𝑥𝑥6 − 125𝑦𝑦3) 

Observe that the remaining polynomial is a difference of cubes, (3𝑥𝑥2)3 − (5𝑦𝑦)3. So, 
we factor,  

27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 = 𝑥𝑥𝑥𝑥[(3𝑥𝑥2)3 − (5𝑦𝑦)3] 

        ( 𝒂𝒂   −   𝒃𝒃 ) � 𝒂𝒂𝟐𝟐     +     𝒂𝒂     𝒃𝒃    +    𝒃𝒃𝟐𝟐� 

    = 𝑥𝑥𝑥𝑥(3𝑥𝑥2 − 5𝑦𝑦)[(3𝑥𝑥2)2 + 3𝑥𝑥2 ∙ 5𝑦𝑦 + (5𝑦𝑦)2] 

    = 𝒙𝒙𝒙𝒙�𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓��𝟗𝟗𝒙𝒙𝟒𝟒 + 𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐𝒚𝒚+ 𝟐𝟐𝟐𝟐𝒚𝒚𝟐𝟐� 

c. After factoring out the common factor 2, we obtain

2𝑛𝑛6 − 128 = 2(𝑛𝑛6 − 64) 

Solution 

 Difference of squares or 
difference of cubes? 

Quadratic trinomials of 
the form 𝒂𝒂𝟐𝟐 ± 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐 

are not factorable! 
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Notice that 𝑛𝑛6 − 64 can be seen either as a difference of squares, (𝑛𝑛3)2 − 82, or as a 
difference of cubes, (𝑛𝑛2)3 − 43. It turns out that applying the difference of squares 
formula first leads us to a complete factorization while starting with the difference 
of cubes does not work so well here. See the two approaches below. 

(𝑛𝑛3)2 − 82 (𝑛𝑛2)3 − 43 

= (𝑛𝑛3 + 8)(𝑛𝑛3 − 8) = (𝑛𝑛2 − 4)(𝑛𝑛4 + 4𝑛𝑛2 + 16) 

= (𝑛𝑛 + 2)(𝑛𝑛2 − 2𝑛𝑛 + 4)(𝑛𝑛 − 2)(𝑛𝑛2 + 2𝑛𝑛 + 4) = (𝑛𝑛 + 2)(𝑛𝑛 − 2)(𝑛𝑛4 + 4𝑛𝑛2 + 16) 

Therefore, the original polynomial should be factored as follows: 

2𝑛𝑛6 − 128 = 2(𝑛𝑛6 − 64) = 2[(𝑛𝑛3)2 − 82] = 2(𝑛𝑛3 + 8)(𝑛𝑛3 − 8) 

  = 𝟐𝟐(𝒏𝒏+ 𝟐𝟐)�𝒏𝒏𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟒𝟒�(𝒏𝒏 − 𝟐𝟐)�𝒏𝒏𝟐𝟐 + 𝟐𝟐𝟐𝟐+ 𝟒𝟒� 

d. To factor (𝑝𝑝 − 2)3 + 𝑞𝑞3, we follow the sum of cubes formula (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏2)
by assuming 𝑎𝑎 = 𝑝𝑝 − 2 and 𝑏𝑏 = 𝑞𝑞. So, we have

 (𝑝𝑝 − 2)3 + 𝑞𝑞3 = (𝑝𝑝 − 2 + 𝑞𝑞) [(𝑝𝑝 − 2)2 − (𝑝𝑝 − 2)𝑞𝑞 + 𝑞𝑞2] 

= (𝑝𝑝 − 2 + 𝑞𝑞) [𝑝𝑝2 − 4𝑝𝑝 + 4 − 𝑝𝑝𝑝𝑝 + 2𝑞𝑞 + 𝑞𝑞2] 

 = (𝒑𝒑 + 𝒒𝒒 − 𝟐𝟐) �𝒑𝒑𝟐𝟐 − 𝒑𝒑𝒑𝒑 + 𝒒𝒒𝟐𝟐 − 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐 + 𝟒𝟒� 

General Strategy of Factoring 

Recall that a polynomial with integral coefficients is factored completely if all of its factors 
are prime over the integers. 

How to Factorize Polynomials Completely? 

1. Factor out all common factors. Leave the remaining polynomial with a positive
leading term and integral coefficients, if possible.

2. Check the number of terms. If the polynomial has

- more than three terms, try to factor by grouping; a four term polynomial may
require 2-2, 3-1, or 1-3 types of grouping.

- three terms, factor by guessing, decomposition, or follow the perfect square
formula, if applicable.

- two terms, follow the difference of squares, or sum or difference of cubes
formula, if applicable. Remember that sum of squares, 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐, is not factorable
over the real numbers, except for possibly a common factor.

There is no easy way of 
factoring this trinomial! 

4 prime factors, so the 
factorization is complete 
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3. Keep in mind the special factoring formulas:

  Difference of Squares 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) 
Perfect Square of a Sum 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 
Perfect Square of a Difference 𝒂𝒂𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 − 𝒃𝒃)𝟐𝟐 
Sum of Cubes  𝒂𝒂𝟑𝟑 + 𝒃𝒃𝟑𝟑 = (𝒂𝒂 + 𝒃𝒃)�𝒂𝒂𝟐𝟐 − 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐� 
Difference of Cubes 𝒂𝒂𝟑𝟑 − 𝒃𝒃𝟑𝟑 = (𝒂𝒂 − 𝒃𝒃)�𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐� 

4. Keep factoring each of the obtained factors until all of them are prime over the
integers.

Multiple-step Factorization  

Factor each polynomial completely. 

a. 80𝑥𝑥5 − 5𝑥𝑥 b. 4𝑎𝑎2 − 4𝑎𝑎 + 1 − 𝑏𝑏2
c. (5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9 d. (𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3

a. First, we factor out the GCF of 80𝑥𝑥5 and −5𝑥𝑥, which equals to 5𝑥𝑥. So, we obtain

80𝑥𝑥5 − 5𝑥𝑥 = 5𝑥𝑥(16𝑥𝑥4 − 1) 

Then, we notice that 16𝑥𝑥4 − 1 can be seen as the difference of squares (4𝑥𝑥2)2 − 12. 
So, we factor further 

80𝑥𝑥5 − 5𝑥𝑥 = 5𝑥𝑥(4𝑥𝑥2 + 1)(4𝑥𝑥2 − 1) 

The first binomial factor, 4𝑥𝑥2 + 1, cannot be factored any further using integral 
coefficients as it is the sum of squares, (2𝑥𝑥)2 + 12. However, the second binomial 
factor, 4𝑥𝑥2 − 1, is still factorable as a difference of squares, (2𝑥𝑥)2 − 12. Therefore, 

80𝑥𝑥5 − 5𝑥𝑥 = 𝟓𝟓𝟓𝟓�𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟏𝟏�(𝟐𝟐𝟐𝟐+ 𝟏𝟏)(𝟐𝟐𝟐𝟐 − 𝟏𝟏) 

This is a complete factorization as all the factors are prime over the integers. 

b. The polynomial 4𝑎𝑎2 − 4𝑎𝑎 + 1 − 𝑏𝑏2 consists of four terms, so we might be able to
factor it by grouping. Observe that the 2-2 type of grouping has no chance to succeed,
as the first two terms involve only the variable 𝑎𝑎 while the second two terms involve
only the variable 𝑏𝑏. This means that after factoring out the common factor in each
group, the remaining binomials would not be the same. So, the 2-2 grouping would
not lead us to a factorization. However, the 3-1 type of grouping should help. This is
because the first three terms form the perfect square, (2𝑎𝑎 − 1)2, and there is a
subtraction before the last term 𝑏𝑏2, which is also a perfect square. So, in the end, we
can follow the difference of squares formula to complete the factoring process.

4𝑎𝑎2 − 4𝑎𝑎 + 1���������− 𝑏𝑏2� = (2𝑎𝑎 − 1)2 − 𝑏𝑏2 
= (𝟐𝟐𝟐𝟐 − 𝟏𝟏 − 𝒃𝒃)(𝟐𝟐𝟐𝟐 − 𝟏𝟏 + 𝒃𝒃) 

Solution 

3-1 type of
grouping

repeated 
difference of 
squares 
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c. To factor (5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9, it is convenient to substitute a new variable, say
𝒂𝒂, for the expression 5𝑟𝑟 + 8. Then,

(5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9 = 𝒂𝒂2 − 6𝒂𝒂 + 9 

= (𝒂𝒂 − 3)2 

= (5𝑟𝑟 + 8− 3)2 

= (5𝑟𝑟 + 5)2 

Notice that 5𝑟𝑟 + 5 can still be factored by taking the 5 out. So, for a complete 
factorization, we factor further  

(5𝑟𝑟 + 5)2 = �5(𝑟𝑟 + 1)�
2

= 𝟐𝟐𝟐𝟐(𝒓𝒓+ 𝟏𝟏)𝟐𝟐 

d. To factor (𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3, we follow the sum of cubes formula (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 −
𝑎𝑎𝑎𝑎 + 𝑏𝑏2) by assuming 𝑎𝑎 = 𝑝𝑝 − 2𝑞𝑞 and 𝑏𝑏 = 𝑝𝑝 + 2𝑞𝑞. So, we have

(𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3

= (𝑝𝑝 − 2𝑞𝑞 + 𝑝𝑝 + 2𝑞𝑞) [(𝑝𝑝 − 2𝑞𝑞)2 − (𝑝𝑝 − 2𝑞𝑞)(𝑝𝑝 + 2𝑞𝑞) + (𝑝𝑝 + 2𝑞𝑞)2]

= 2𝑝𝑝 [𝑝𝑝2 − 4𝑝𝑝𝑝𝑝 + 4𝑞𝑞2 − (𝑝𝑝2 − 4𝑞𝑞2) + 𝑝𝑝2 + 4𝑝𝑝𝑝𝑝 + 4𝑞𝑞2]

= 2𝑝𝑝 (2𝑝𝑝2 + 8𝑞𝑞2 − 𝑝𝑝2 + 4𝑞𝑞2) = 𝟐𝟐𝟐𝟐�𝒑𝒑𝟐𝟐 + 𝟏𝟏𝟏𝟏𝒒𝒒𝟐𝟐�

F.3  Exercises

Determine whether each polynomial in problems 7-18 is a perfect square, a difference of squares, a sum or 
difference of cubes, or neither. 

1. 0.25𝑥𝑥2 − 0.16𝑦𝑦2 2. 𝑥𝑥2 − 14𝑥𝑥 + 49

3. 9𝑥𝑥4 + 4𝑥𝑥2 + 1 4. 4𝑥𝑥2 − (𝑥𝑥 + 4)2

5. 125𝑥𝑥3 − 64 6. 𝑦𝑦12 + 0.008𝑥𝑥3

7. −𝑦𝑦4 + 16𝑥𝑥4 8. 64 + 48𝑥𝑥3 + 9𝑥𝑥6

9. 25𝑥𝑥6 − 10𝑥𝑥3𝑦𝑦2 + 𝑦𝑦4 10. −4𝑥𝑥6 − 𝑦𝑦6

11. −8𝑥𝑥3 + 27𝑦𝑦6 12. 81𝑥𝑥2 − 16𝑥𝑥

13. Generally, the sum of squares is not factorable. For example, 𝑥𝑥2 + 9 cannot be factored in integral
coefficients. However, some sums of squares can be factored. For example, the binomial 25𝑥𝑥2 + 100 can be
factored. Factor the above example and discuss what makes a sum of two squares factorable.

 go back to the 
original variable 

perfect square! 
factoring by 
substitution 

multiple special 
formulas and 
simplifying 

   Remember to represent 
the new variable by a 

different letter than the 
original variable! 
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14. Insert the correct signs into the blanks.

a. 8 + 𝑎𝑎3 = (2 ___ 𝑎𝑎)(4 ___ 2𝑎𝑎 ___ 𝑎𝑎2) b. 𝑏𝑏3 − 1 = (𝑏𝑏 ___ 1)(𝑏𝑏2 ___ 𝑏𝑏 ___ 1)

Factor each polynomial completely, if possible. 

15. 𝑥𝑥2 − 𝑦𝑦2 16. 𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2 17. 𝑥𝑥3 − 𝑦𝑦3

18. 16𝑥𝑥2 − 100 19. 4𝑧𝑧2 − 4𝑧𝑧 + 1 20. 𝑥𝑥3 + 27

21. 4𝑧𝑧2 + 25 22. 𝑦𝑦2 + 18𝑦𝑦 + 81 23. 125 − 𝑦𝑦3

24. 144𝑥𝑥2 − 64𝑦𝑦2 25. 𝑛𝑛2 + 20𝑛𝑛𝑛𝑛 + 100𝑚𝑚2 26. 27𝑎𝑎3𝑏𝑏6 + 1

27. 9𝑎𝑎4 − 25𝑏𝑏6 28. 25 − 40𝑥𝑥 + 16𝑥𝑥2 29. 𝑝𝑝6 − 64𝑞𝑞3

30. 16𝑥𝑥2𝑧𝑧2 − 100𝑦𝑦2 31. 4 + 49𝑝𝑝2 + 28𝑝𝑝 32. 𝑥𝑥12 + 0.008𝑦𝑦3

33. 𝑟𝑟4 − 9𝑟𝑟2 34. 9𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 − 4𝑏𝑏2 35. 1
8
− 𝑎𝑎3

36. 0.04𝑥𝑥2 − 0.09𝑦𝑦2 37. 𝑥𝑥4 + 8𝑥𝑥2 + 1 38. − 1
27

+ 𝑡𝑡3

39. 16𝑥𝑥6 − 121𝑥𝑥2𝑦𝑦4 40. 9 + 60𝑝𝑝𝑝𝑝 + 100𝑝𝑝2𝑞𝑞2 41. −𝑎𝑎3𝑏𝑏3 − 125𝑐𝑐6

42. 36𝑛𝑛2𝑡𝑡 − 1 43. 9𝑎𝑎8 − 48𝑎𝑎4𝑏𝑏 + 64𝑏𝑏2 44. 9𝑥𝑥3 + 8

45. (𝑥𝑥 + 1)2 − 49 46. 1
4
𝑢𝑢2 − 𝑢𝑢𝑢𝑢 + 𝑣𝑣2 47. 2𝑡𝑡4 − 128𝑡𝑡

48. 81 − (𝑛𝑛 + 3)2 49. 𝑥𝑥2𝑛𝑛 + 6𝑥𝑥𝑛𝑛 + 9 50. 8 − (𝑎𝑎 + 2)3

51. 16𝑧𝑧4 − 1 52. 5𝑐𝑐3 + 20𝑐𝑐2 + 20𝑐𝑐  53. (𝑥𝑥 + 5)3 − 𝑥𝑥3

54. 𝑎𝑎4 − 81𝑏𝑏4 55. 0.25𝑧𝑧2 − 0.7𝑧𝑧 + 0.49 56. (𝑥𝑥 − 1)3 + (𝑥𝑥 + 1)3

57. (𝑥𝑥 − 2𝑦𝑦)2 − (𝑥𝑥 + 𝑦𝑦)2 58. 0.81𝑝𝑝8 + 9𝑝𝑝4 + 25 59. (𝑥𝑥 + 2)3 − (𝑥𝑥 − 2)3

Factor each polynomial completely. 

60. 3𝑦𝑦3 − 12𝑥𝑥2𝑦𝑦 61. 2𝑥𝑥2 + 50𝑎𝑎2 − 20𝑎𝑎𝑎𝑎   62. 𝑥𝑥3 − 𝑥𝑥𝑦𝑦2 + 𝑥𝑥2𝑦𝑦 − 𝑦𝑦3

63. 𝑦𝑦2 − 9𝑎𝑎2 + 12𝑦𝑦 + 36 64. 64𝑢𝑢6 − 1 65. 7𝑚𝑚3 + 𝑚𝑚6 − 8

66. −7𝑛𝑛2 + 2𝑛𝑛3 + 4𝑛𝑛 − 14 67. 𝑎𝑎8 − 𝑏𝑏8 68. 𝑦𝑦9 − 𝑦𝑦 

69. (𝑥𝑥2 − 2)2 − 4(𝑥𝑥2 − 2) − 21 70. 8(𝑝𝑝 − 3)2 − 64(𝑝𝑝 − 3) + 128 71. 𝑎𝑎2 − 𝑏𝑏2 − 6𝑏𝑏 − 9

72. 25(2𝑎𝑎 − 𝑏𝑏)2 − 9 73. 3𝑥𝑥2𝑦𝑦2𝑧𝑧 + 25𝑥𝑥𝑥𝑥𝑧𝑧2 + 28𝑧𝑧3 74. 𝑥𝑥8𝑎𝑎 − 𝑦𝑦2 

75. 𝑥𝑥6 − 2𝑥𝑥5 + 𝑥𝑥4 − 𝑥𝑥2 + 2𝑥𝑥 − 1 76. 4𝑥𝑥2𝑦𝑦4 − 9𝑦𝑦4 − 4𝑥𝑥2𝑧𝑧4 +  9𝑧𝑧4 77. 𝑐𝑐2𝑤𝑤+1 + 2𝑐𝑐𝑤𝑤+1 + 𝑐𝑐 
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F4 Solving Polynomial Equations and Applications of Factoring 

Many application problems involve solving polynomial equations. In Chapter L, we studied 
methods for solving linear, or first-degree, equations. Solving higher degree polynomial 
equations requires other methods, which often involve factoring. In this chapter, we study 
solving polynomial equations using the zero-product property, graphical connections 
between roots of an equation and zeros of the corresponding function, and some application 
problems involving polynomial equations or formulas that can be solved by factoring. 

Zero-Product Property 

Recall that to solve a linear equation, for example 2𝑥𝑥 + 1 = 0, it is enough to isolate the 
variable on one side of the equation by applying reverse operations. Unfortunately, this 
method usually does not work when solving higher degree polynomial equations. For 
example, we would not be able to solve the equation 𝑥𝑥2 − 𝑥𝑥 = 0 through the reverse 
operation process, because the variable 𝑥𝑥 appears in different powers.  

So … how else can we solve it?  

In this particular example, it is possible to guess the solutions. They are 𝑥𝑥 = 0 and 𝑥𝑥 = 1. 

But how can we solve it algebraically?  

It turns out that factoring the left-hand side of the equation 𝑥𝑥2 − 𝑥𝑥 = 0 helps. Indeed, 
𝑥𝑥(𝑥𝑥 − 1) = 0 tells us that the product of 𝑥𝑥 and 𝑥𝑥 − 1 is 0. Since the product of two 
quantities is 0, at least one of them must be 0. So, either 𝑥𝑥 = 0 or 𝑥𝑥 − 1 = 0, which solves 
to 𝑥𝑥 = 1. 

The equation discussed above is an example of a second degree polynomial equation, more 
commonly known as a quadratic equation.  

Definition 4.1 A quadratic equation is a second degree polynomial equation in one variable that can be 
written in the form, 

𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎, 

where 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are real numbers and 𝑎𝑎 ≠ 0. This form is called standard form. 

One of the methods of solving such equations involves factoring and the zero-product 
property that is stated below. 

  For any real numbers 𝒂𝒂 and 𝒃𝒃,  

   𝒂𝒂𝒂𝒂 = 𝟎𝟎  if and only if 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎 

This means that any product containing a factor of 0 is equal to 0, and conversely, if a 
product is equal to 0, then at least one of its factors is equal to 0. 

The implication “if 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎, then 𝒂𝒂𝒂𝒂 = 𝟎𝟎” is true by the multiplicative property of 
zero. 

To prove the implication “if 𝒂𝒂𝒂𝒂 = 𝟎𝟎, then 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎”, let us assume first that 𝑎𝑎 ≠ 0. 
(As, if 𝑎𝑎 = 0, then the implication is already proven.) 

Zero-Product 
Property 

Proof 
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Since 𝑎𝑎 ≠ 0, then 1
𝑎𝑎
 exists. Therefore, both sides of 𝑎𝑎𝑎𝑎 = 0 can be multiplied by 1

𝑎𝑎
 and we

obtain 
1
𝑎𝑎
∙ 𝑎𝑎𝑎𝑎 =

1
𝑎𝑎
∙ 0

𝑏𝑏 =  0,

which concludes the proof. 

Attention: The zero-product property works only for a product equal to 0. For example, 
the fact that 𝒂𝒂𝒂𝒂 = 𝟏𝟏 does not mean that either 𝑎𝑎 or 𝑏𝑏 equals to 1. 

Using the Zero-Product Property to Solve Polynomial Equations 

Solve each equation. 

a. (𝑥𝑥 − 3)(2𝑥𝑥 + 5) = 0 b. 2𝑥𝑥(𝑥𝑥 − 5)2 = 0

a. Since the product of 𝑥𝑥 − 3 and 2𝑥𝑥 + 5 is equal to zero, then by the zero-product
property at least one of these expressions must equal to zero. So,

𝑥𝑥 − 3 = 0   or   2𝑥𝑥 + 5 = 0 

which results in 𝑥𝑥 = 3   or  2𝑥𝑥 = −5 
 𝑥𝑥 = −5

2
 

Thus, �− 𝟓𝟓
𝟐𝟐

,𝟑𝟑� is the solution set of the given equation. 

b. Since the product 2𝑥𝑥(𝑥𝑥 − 5)2 is zero, then either 𝑥𝑥 = 0 or 𝑥𝑥 − 5 = 0, which solves to
𝑥𝑥 = 5. Thus, the solution set is equal to {𝟎𝟎,𝟓𝟓}.

Note 1: The factor of 2 does not produce any solution, as 2 is never equal to 0. 

Note 2: The perfect square (𝑥𝑥 − 5)2 equals to 0 if and only if the base 𝑥𝑥 − 5 equals 
to 0.  

Solving Polynomial Equations by Factoring 

To solve polynomial equations of second or higher degree by factoring, we 

 arrange the polynomial in decreasing order of powers on one side of the equation,
 keep the other side of the equation equal to 0,
 factor the polynomial completely,
 use the zero-product property to form linear equations for each factor,
 solve the linear equations to find the roots (solutions) to the original equation.

Solution 
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Solving Quadratic Equations by Factoring 

Solve each equation by factoring. 

a. 𝑥𝑥2 + 9 = 6𝑥𝑥 b. 15𝑥𝑥2 − 12𝑥𝑥 = 0

c. (𝑥𝑥 + 2)(𝑥𝑥 − 1) = 4(3 − 𝑥𝑥) − 8 d. (𝑥𝑥 − 3)2 = 36𝑥𝑥2

a. To solve 𝑥𝑥2 + 9 = 6𝑥𝑥 by factoring we need one side of this equation equal to 0. So,
first, we move the 6𝑥𝑥 term to the left side of the equation,

𝑥𝑥2 + 9− 6𝑥𝑥 = 0, 

 and arrange the terms in decreasing order of powers of 𝑥𝑥, 

𝑥𝑥2 − 6𝑥𝑥 + 9 = 0. 

Then, by observing that the resulting trinomial forms a perfect square of 𝑥𝑥 − 3, we 
factor 

(𝑥𝑥 − 3)2 = 0, 
which is equivalent to 

𝑥𝑥 − 3 = 0, 
and finally 

𝑥𝑥 = 3. 

So, the solution is 𝑥𝑥 = 𝟑𝟑. 

b. After factoring the left side of the equation 15𝑥𝑥2 − 12𝑥𝑥 = 0,

3𝑥𝑥(5𝑥𝑥 − 4) = 0, 

we use the zero-product property. Since 3 is never zero, the solutions come from the 
equations 

𝑥𝑥 = 𝟎𝟎   or   5𝑥𝑥 − 4 = 0. 

Solving the second equation for 𝑥𝑥, we obtain  

5𝑥𝑥 = 4, 
and finally 

𝑥𝑥 = 𝟒𝟒
𝟓𝟓
. 

So, the solution set consists of 0 and 𝟒𝟒
𝟓𝟓
. 

c. To solve (𝑥𝑥 + 2)(𝑥𝑥 − 1) = 4(3− 𝑥𝑥) − 8 by factoring, first, we work out the brackets
and arrange the polynomial in decreasing order of exponents on the left side of the
equation. So, we obtain

𝑥𝑥2 + 𝑥𝑥 − 2 = 12 − 4𝑥𝑥 − 8 

𝑥𝑥2 + 5𝑥𝑥 − 6 = 0 

(𝑥𝑥 + 6)(𝑥𝑥 − 1) = 0 

Solution 
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Now, we can read the solutions from each bracket, that is, 𝑥𝑥 =  −𝟔𝟔 and 𝑥𝑥 = 𝟏𝟏. 

Observation: In the process of solving a linear equation of the form 𝑎𝑎𝑎𝑎 + 𝑏𝑏 = 0, first 
we subtract 𝑏𝑏 and then we divide by 𝑎𝑎. So the solution, sometimes 
referred to as the root, is 𝑥𝑥 = −𝒃𝒃

𝒂𝒂
. This allows us to read the solution 

directly from the equation. For example, the solution to 𝑥𝑥 − 1 = 0 is 
𝑥𝑥 = 1 and the solution to 2𝑥𝑥 − 1 = 0 is 𝑥𝑥 = 1

2
. 

d. To solve (𝑥𝑥 − 3)2 = 36𝑥𝑥2, we bring all the terms to one side and factor the obtained
difference of squares, following the formula 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏). So, we have

(𝑥𝑥 − 3)2 − 36𝑥𝑥2 = 0 

(𝑥𝑥 − 3 + 6𝑥𝑥)(𝑥𝑥 − 3 − 6𝑥𝑥) = 0 

(7𝑥𝑥 − 3)(−5𝑥𝑥 − 3) = 0 

Then, by the zero-product property, 

7𝑥𝑥 − 3 = 0  or  −5𝑥𝑥 − 3 = 0, 
which results in 

𝑥𝑥 = 𝟑𝟑
𝟕𝟕
  or  𝑥𝑥 = −𝟑𝟑

𝟓𝟓
. 

Solving Polynomial Equations by Factoring 

Solve each equation by factoring. 

a. 2𝑥𝑥3 − 2𝑥𝑥2 = 12𝑥𝑥 b. 𝑥𝑥4 + 36 = 13𝑥𝑥2

a. First, we bring all the terms to one side of the equation and then factor the resulting
polynomial.

2𝑥𝑥3 − 2𝑥𝑥2 = 12𝑥𝑥 

2𝑥𝑥3 − 2𝑥𝑥2 − 12𝑥𝑥 = 0 

2𝑥𝑥(𝑥𝑥2 − 𝑥𝑥 − 6) = 0 

2𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 + 2) = 0 

By the zero-product property, the factors 𝑥𝑥, (𝑥𝑥 − 3) and (𝑥𝑥 + 2), give us the 
corresponding solutions, 0, 3, and – 2. So, the solution set of the given equation is 
{𝟎𝟎,𝟑𝟑,−𝟐𝟐}. 

b. Similarly as in the previous examples, we solve 𝑥𝑥4 + 36 = 13𝑥𝑥2 by factoring and
using the zero-product property. Since

𝑥𝑥4 − 13𝑥𝑥2 + 36 = 0 

Solution 
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(𝑥𝑥2 − 4)(𝑥𝑥2 − 9) = 0 

(𝑥𝑥 + 2)(𝑥𝑥 − 2)(𝑥𝑥 + 3)(𝑥𝑥 − 3) = 0, 

then, the solution set of the original equation is {−𝟐𝟐,𝟐𝟐,−𝟑𝟑,𝟑𝟑} 

Observation: 𝑛𝑛-th degree polynomial equations may have up to 𝑛𝑛 roots (solutions). 

Factoring in Applied Problems 

Factoring is a useful strategy when solving applied problems. For example, factoring is 
often used in solving formulas for a variable, in finding roots of a polynomial function, 
and generally, in any problem involving polynomial equations that can be solved by 
factoring. 

Solving Formulas with the Use of Factoring 

Solve each formula for the specified variable. 

a. 𝐴𝐴 = 2𝒉𝒉𝑤𝑤 + 2𝑤𝑤𝑤𝑤 + 2𝑙𝑙𝒉𝒉,   for 𝒉𝒉 b. 𝑠𝑠 = 2𝒕𝒕+3
𝒕𝒕

,   for 𝒕𝒕 

a. To solve 𝐴𝐴 = 2𝒉𝒉𝑤𝑤 + 2𝑤𝑤𝑤𝑤 + 2𝑙𝑙𝒉𝒉 for 𝒉𝒉, we want to keep both terms containing 𝒉𝒉 on
the same side of the equation and bring the remaining terms to the other side. Here is
an equivalent equation,

𝐴𝐴 − 2𝑤𝑤𝑤𝑤 = 2𝒉𝒉𝑤𝑤 + 2𝑙𝑙𝒉𝒉, 

which, for convenience, could be written starting with ℎ-terms: 

2𝒉𝒉𝑤𝑤 + 2𝑙𝑙𝒉𝒉 = 𝐴𝐴 − 2𝑤𝑤𝑤𝑤 

Now, factoring 𝒉𝒉 out causes 𝒉𝒉 to appear in only one place, which is what we need to 
isolate it. So,  

(2𝑤𝑤 + 2𝑙𝑙)𝒉𝒉 = 𝐴𝐴 − 2𝑤𝑤𝑤𝑤 

𝒉𝒉 =
𝑨𝑨 − 𝟐𝟐𝟐𝟐𝟐𝟐
𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐

Notice: In the above formula, there is nothing that can be simplified. Trying to reduce 
2 or 2𝑤𝑤 or 𝑙𝑙 would be an error, as there is no essential common factor that can be 
carried out of the numerator. 

b. When solving 𝑠𝑠 = 2𝒕𝒕+3
𝒕𝒕

 for 𝒕𝒕, our goal is to, firstly, keep the variable 𝒕𝒕 in the numerator 
and secondly, to keep it in a single place. So, we have 

𝑠𝑠 =
2𝒕𝒕 + 3
𝒕𝒕

𝑠𝑠𝒕𝒕 = 2𝒕𝒕 + 3 

Solution 
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𝑠𝑠𝒕𝒕 − 2𝒕𝒕 = 3 

𝒕𝒕(𝑠𝑠 − 2) = 3 

𝒕𝒕 =
𝟑𝟑

𝒔𝒔 − 𝟐𝟐
. 

Finding Roots of a Polynomial Function 

A toy-rocket is launched vertically with an initial velocity of 40 meters per second. If its 
height in meters after t seconds is given by the function  

ℎ(𝑡𝑡) = −5𝑡𝑡2 + 40𝑡𝑡, 

in how many seconds will the rocket hit the ground? 

The rocket hits the ground when its height is 0. So, we need to find the time 𝑡𝑡 for which 
ℎ(𝑡𝑡) = 0. Therefore, we solve the equation 

−5𝑡𝑡2 + 40𝑡𝑡 = 0
for 𝑡𝑡. From the factored form 

−5𝑡𝑡(𝑡𝑡 − 8) = 0

we conclude that the rocket is on the ground at times 0 and 8 seconds. So, the rocket hits 
the ground 8 seconds after it was launched. 

Solving an Application Problem with the Use of Factoring 

The height of a triangle is 1 meter less than twice the length of the base. If the area of the 
triangle is 14 m2, how long are the base and the height? 

Let 𝑏𝑏 and ℎ represent the base and the height of the triangle, correspondingly. The first 
sentence states that ℎ is 1 less than 2 times 𝑏𝑏. So, we record 

ℎ = 2𝑏𝑏 − 1. 

Using the formula for area of a triangle, 𝐴𝐴 = 1
2
𝑏𝑏ℎ, and the fact that 𝐴𝐴 = 14, we obtain 

14 =
1
2
𝑏𝑏(2𝑏𝑏 − 1). 

Since this is a one-variable quadratic equation, we will attempt to solve it by factoring, after 
bringing all the terms to one side of the equation. So, we have 

0 =
1
2
𝑏𝑏(2𝑏𝑏 − 1) − 14 

0 = 𝑏𝑏(2𝑏𝑏 − 1) − 28 

0 = 2𝑏𝑏2 − 𝑏𝑏 − 28 

Solution 

Solution 

 to clear the fraction, multiply each term 
by 2 before working out the bracket 

 factor 𝑡𝑡 

https://upload.wikimedia.org/wikipedia/commons/a/ab/Epic_Cluster_rocket_launch.jpg
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0 = (2𝑏𝑏 + 7)(𝑏𝑏 − 4), 

which by the zero-product property gives us 𝑏𝑏 = − 7
2
 or 𝑏𝑏 = 4. Since 𝑏𝑏 represents the length 

of the base, it must be positive. So, the base is 4 meters long and the height is ℎ = 2𝑏𝑏 −
1 = 2 ∙ 4 − 1 = 𝟕𝟕 meters long. 

F.4  Exercises

True or false. 

1. If 𝑥𝑥𝑥𝑥 = 0 then 𝑥𝑥 = 0 or 𝑦𝑦 = 0.

2. If 𝑎𝑎𝑎𝑎 = 1 then 𝑎𝑎 = 1 or 𝑏𝑏 = 1.

3. If 𝑥𝑥 + 𝑦𝑦 = 0 then 𝑥𝑥 = 0 or 𝑦𝑦 = 0.

4. If 𝑎𝑎2 = 0 then 𝑎𝑎 = 0.

5. If 𝑥𝑥2 = 1 then 𝑥𝑥 = 1.

6. Which of the following equations is not in proper form for using the zero-product property.

a. 𝑥𝑥(𝑥𝑥 − 1) + 3(𝑥𝑥 − 1) = 0 b. (𝑥𝑥 + 3)(𝑥𝑥 − 1) = 0

c. 𝑥𝑥(𝑥𝑥 − 1) = 3(𝑥𝑥 − 1) d. (𝑥𝑥 + 3)(𝑥𝑥 − 1) = −3

Solve each equation. 

7. 3(𝑥𝑥 − 1)(𝑥𝑥 + 4) = 0 8. 2(𝑥𝑥 + 5)(𝑥𝑥 − 7) = 0

9. (3𝑥𝑥 + 1)(5𝑥𝑥 + 4) = 0 10. (2𝑥𝑥 − 3)(4𝑥𝑥 − 1) = 0

11. 𝑥𝑥2 + 9𝑥𝑥 + 18 = 0 12. 𝑥𝑥2 − 18𝑥𝑥 + 80 = 0

13. 2𝑥𝑥2 = 7− 5𝑥𝑥 14. 3𝑘𝑘2 = 14𝑘𝑘 − 8

15. 𝑥𝑥2 + 6𝑥𝑥 = 0 16. 6𝑦𝑦2 − 3𝑦𝑦 = 0

17. (4− 𝑎𝑎)2 = 0 18. (2𝑏𝑏 + 5)2 = 0

19. 0 = 4𝑛𝑛2 − 20𝑛𝑛 + 25 20. 0 = 16𝑥𝑥2 + 8𝑥𝑥 + 1

21. 𝑝𝑝2 − 32 = −4𝑝𝑝 22. 19𝑎𝑎 + 36 = 6𝑎𝑎2

23. 𝑥𝑥2 + 3 = 10𝑥𝑥 − 2𝑥𝑥2 24. 3𝑥𝑥2 + 9𝑥𝑥 + 30 = 2𝑥𝑥2 − 2𝑥𝑥

25. (3𝑥𝑥 + 4)(3𝑥𝑥 − 4) = −10𝑥𝑥 26. (5𝑥𝑥 + 1)(𝑥𝑥 + 3) = −2(5𝑥𝑥 + 1)

27. 4(𝑦𝑦 − 3)2 − 36 = 0 28. 3(𝑎𝑎 + 5)2 − 27 = 0
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29. (𝑥𝑥 − 3)(𝑥𝑥 + 5) = −7 30. (𝑥𝑥 + 8)(𝑥𝑥 − 2) = −21

31. (2𝑥𝑥 − 1)(𝑥𝑥 − 3) = 𝑥𝑥2 − 𝑥𝑥 − 2 32. 4𝑥𝑥2 + 𝑥𝑥 − 10 = (𝑥𝑥 − 2)(𝑥𝑥 + 1)

33. 4(2𝑥𝑥 + 3)2 − (2𝑥𝑥 + 3) − 3 = 0 34. 5(3𝑥𝑥 − 1)2 + 3 = −16(3𝑥𝑥 − 1)

35. 𝑥𝑥3 + 2𝑥𝑥2 − 15𝑥𝑥 = 0 36. 6𝑥𝑥3 − 13𝑥𝑥2 − 5𝑥𝑥 = 0

37. 25𝑥𝑥3 = 64𝑥𝑥 38. 9𝑥𝑥3 = 49𝑥𝑥

39. 𝑦𝑦4 − 26𝑦𝑦2 + 25 = 0 40. 𝑛𝑛4 − 50𝑛𝑛2 + 49 = 0

41. 𝑥𝑥3 − 6𝑥𝑥2 = −8𝑥𝑥 42. 𝑥𝑥3 − 2𝑥𝑥2 = 3𝑥𝑥

43. 𝑎𝑎3 + 𝑎𝑎2 − 9𝑎𝑎 − 9 = 0 44. 2𝑥𝑥3 − 𝑥𝑥2 − 2𝑥𝑥 + 1 = 0

45. 5𝑥𝑥3 + 2𝑥𝑥2 − 20𝑥𝑥 − 8 = 0 46. 2𝑥𝑥3 + 3𝑥𝑥2 − 18𝑥𝑥 − 27 = 0

47. Discuss the validity of the following solution:
𝑥𝑥3 = 9𝑥𝑥 
𝑥𝑥2 = 9 
𝑥𝑥 = 3 

How many solutions should we expect? What is the solution set of the original equation? What went wrong 
in the above procedure? 

48. Given that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 14𝑥𝑥 + 50, find all values of 𝑥𝑥 such that 𝑓𝑓(𝑥𝑥) = 5.

49. Given that 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 − 15𝑥𝑥, find all values of 𝑥𝑥 such that 𝑔𝑔(𝑥𝑥) = −7.

50. Given that 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 3𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = −6𝑥𝑥 + 5, find all values of 𝑥𝑥 such that 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥).

51. Given that 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 + 11𝑥𝑥 − 16 and ℎ(𝑥𝑥) = 5 + 9𝑥𝑥 − 𝑥𝑥2, find all values of 𝑥𝑥 such that 𝑔𝑔(𝑥𝑥) = ℎ(𝑥𝑥).

Solve each equation for the specified variable. 

52. 𝑷𝑷𝑟𝑟𝑟𝑟 = 𝐴𝐴 − 𝑷𝑷,  for 𝑷𝑷 53. 3𝒔𝒔 + 2𝑝𝑝 = 5− 𝑟𝑟𝒔𝒔,  for 𝒔𝒔

54. 5𝑎𝑎 + 𝑏𝑏𝒓𝒓 = 𝒓𝒓 − 2𝑐𝑐,  for 𝒓𝒓 55. 𝐸𝐸 = 𝑅𝑅+𝒓𝒓
𝒓𝒓

,  for 𝒓𝒓 

56. 𝑧𝑧 = 𝑥𝑥+2𝒚𝒚
𝒚𝒚

,  for 𝒚𝒚 57. 𝑐𝑐 = −2𝒕𝒕+4
𝒕𝒕

,  for 𝒕𝒕 

Solve each problem. 

58. Bartek threw down a small rock from the top of a 120 m high observation tower. Suppose the distance
travelled by the rock, in meters, is modelled by the function 𝑑𝑑(𝑡𝑡) = 𝑣𝑣𝑣𝑣 + 4𝑡𝑡2, where 𝑣𝑣 is the initial velocity
in m/s, and 𝑡𝑡 is the time in seconds. In how many seconds will the rock hit the ground if it was thrown with
the initial velocity of 4 m/s?

59. A camera is dropped from a hot-air balloon 320 meters above the ground. Suppose the height of the camera
above the ground, in meters, is given by the function ℎ(𝑡𝑡) = 320 − 5𝑡𝑡2, where 𝑡𝑡 is the time in seconds. How
long will it take for the camera to hit the ground?
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60. The sum of squares of two consecutive numbers is 85. Find the smaller number.

61. The difference between a number and its square is −156. Find the number.

62. The length of a rectangle is 1 centimeter more than twice the width. If the area of this
rectangle is 105 cm2, find its width and length.

63. A postcard is 7 cm longer than it is wide. The area of this postcard is 144 cm2. Find its length and width.

64. A triangle with the area of 80 cm2 is 6 cm taller than the length of its base. Find the
dimensions of the triangle.

65. A triangular house is 3 m taller than it is wide. If the cross-sectional area
(see the accompanying picture) of the house is 35 m2, what are the width
and the height of this house?

66. Amira designs a rectangular flower bed with a pathway of uniform
width around it. She has 42 square meters of ground available for the whole project (including
the path). If the flower bed is planned to be 3 meters by 4 meters, how wide would be the
pathway around it?

67. Suppose a rectangular flower bed is 5 m longer than it is wide. What are the dimensions of the flower bed if
its area is 84 m2 ?

68. Suppose a picture frame measures 10 cm by 18 cm, and it frames a picture with 48 cm2

of area. How wide is the frame?

69. When 187 cm2 picture is framed, its outside dimensions become 15 cm by 21 cm. How
wide is the frame?

70. After lengthening each side of a square by 4 cm, the area of the enlarged square turns out to be 225 cm2. How
long is the side of the original square?

71. A square piece of drywall was used to fix a hole in a wall.  The sides of the piece of drywall had to be
shortened by 2 inches in order to cover the required area of 49 in2. What were the dimensions of the original
piece of drywall?

 Attributions 

p.214 Red Carpet by 3dman_eu / Pixabay Licence
p.224 Arch Architectural Design by Javier Gonzalez / Pexels Licence
p.229  Epic Cluster Rocket Launch by Steve Jurvetson / CC BY 2.0
p.232 Triangular House by Kristin Ellis / Unsplash Licence
p.232 Tulips by andreas160578 / Pixabay Licence

𝑏𝑏 

𝑏𝑏 + 6 

2𝑤𝑤 + 1 

𝑤𝑤
 

https://pixabay.com/en/red-carpet-wool-yarn-star-1013667/
https://pixabay.com/en/users/3dman_eu-1553824/
https://pixabay.com/en/service/license/
https://www.pexels.com/photo/photograph-of-a-concrete-structure-1261415/
https://www.pexels.com/@javierdiazg
https://www.pexels.com/photo-license/
https://commons.wikimedia.org/wiki/File:Epic_Cluster_rocket_launch.jpg
https://www.flickr.com/photos/jurvetson/
https://creativecommons.org/licenses/by/2.0
https://unsplash.com/photos/qHlUwZLS5F4
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https://unsplash.com/license
https://pixabay.com/id/tulip-taman-musim-semi-bunga-bunga-2157301/
https://pixabay.com/id/users/andreas160578-2383079/
https://pixabay.com/en/service/license/
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Rational Expressions and Functions 
In the previous two chapters we discussed algebraic expressions, equations, and 
functions related to polynomials. In this chapter, we will examine a broader 
category of algebraic expressions, rational expressions, also referred to as 
algebraic fractions. Similarly as in arithmetic, where a rational number is a 
quotient of two integers with a denominator that is different than zero, a rational 
expression is a quotient of two polynomials, also with a denominator that is 
different than zero.  

We start by introducing the related topic of integral exponents, including scientific notation. Then, we discuss 
operations on algebraic fractions, solving rational equations, and properties and graphs of rational functions with 
an emphasis on such features as domain, range, and asymptotes. At the end of this chapter, we show examples of 
applied problems, including work problems, that require solving rational equations.  

RT1 Integral Exponents and Scientific Notation 

Integral Exponents 

In Section P2, we discussed the following power rules, using whole numbers for the 
exponents.  

product rule 𝒂𝒂𝒎𝒎 ∙ 𝒂𝒂𝒏𝒏 = 𝒂𝒂𝒎𝒎+𝒏𝒏 (𝒂𝒂𝒂𝒂)𝒏𝒏 = 𝒂𝒂𝒏𝒏𝒃𝒃𝒏𝒏 

quotient rule 𝒂𝒂𝒎𝒎

𝒂𝒂𝒏𝒏
= 𝒂𝒂𝒎𝒎−𝒏𝒏 �

𝒂𝒂
𝒃𝒃
�
𝒏𝒏

=
𝒂𝒂𝒏𝒏

𝒃𝒃𝒏𝒏

power rule (𝒂𝒂𝒎𝒎)𝒏𝒏 = 𝒂𝒂𝒎𝒎𝒎𝒎 
𝒂𝒂𝟎𝟎 = 𝟏𝟏 for 𝒂𝒂 ≠ 𝟎𝟎 
𝟎𝟎𝟎𝟎 is undefined 

Observe that these rules gives us the following result. 

𝒂𝒂−𝟏𝟏 = 𝑎𝑎𝑛𝑛−(𝑛𝑛+1) = 𝑎𝑎𝑛𝑛

𝑎𝑎𝑛𝑛+1
= 𝑎𝑎𝑛𝑛

𝑎𝑎𝑛𝑛∙𝑎𝑎
= 𝟏𝟏

𝒂𝒂

Consequantly,  𝒂𝒂−𝒏𝒏 =  (𝑎𝑎𝑛𝑛)−1 = 𝟏𝟏
𝒂𝒂𝒏𝒏

 . 

Since   𝒂𝒂−𝒏𝒏 = 𝟏𝟏
𝒂𝒂𝒏𝒏

 , then the expression 𝑎𝑎𝑛𝑛 is meaningful for any integral exponent 𝑛𝑛 and a 

nonzero real base 𝑎𝑎. So, the above rules of exponents can be extended to include integral 

exponents. 

In practice, to work out the negative sign of an exponent, take the reciprocal of the base, 
or equivalently, “change the level” of the power. For example, 

3−2 = �1
3
�
2

= 12

32
= 1

9
    and 2−3

3−1
= 31

23
= 3

8
. 

quotient rule product rule 

power rule 
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Attention! Exponents apply only to the number, letter, or expression in a bracket 
immediately to the left of the exponent. For example, 

  𝒙𝒙−𝟐𝟐 = 𝟏𝟏
𝒙𝒙𝟐𝟐

,      (−𝒙𝒙)−𝟐𝟐 = 1
(−𝑥𝑥)2 = 𝟏𝟏

𝒙𝒙𝟐𝟐
,     𝑏𝑏𝑏𝑏𝑏𝑏    −𝒙𝒙−𝟐𝟐 = − 𝟏𝟏

𝒙𝒙𝟐𝟐
. 

Evaluating Expressions with Integral Exponents 

Evaluate each expression.  

a. 3−1 + 2−1 b. 5−2

2−5

c. −22

2−7
d. −2−2

3∙2−3

a. 3−1 + 2−1 = 1
3

+ 1
2

= 2
6

+ 3
6

= 𝟓𝟓
𝟔𝟔
 

Caution! 3−1 + 2−1 ≠ (3 + 2)−1, because the value of  3−1 + 2−1 is 5
6
, as shown in the 

example, while the value of (3 + 2)−1 is 1
5
. 

b. 5−2

2−5
= 25

52
= 𝟑𝟑𝟑𝟑

𝟐𝟐𝟐𝟐
 

Note: To work out the negative exponent, move the power from the numerator to the 
denominator or vice versa. 

c. −22

2−7
= −22 ∙ 27 = −𝟐𝟐𝟗𝟗 

Attention! The role of a negative sign in front of a base number or in front of an 
exponent is different. To work out the negative in 2−7, we either take the reciprocal of the 
base, or we change the position of the power to a different level in the fraction. So, 2−7 =

�1
2
�
7
 or 2−7 = 1

27
. However, the negative sign in −22 just means that the number is negative. 

So, −22 = −4. Caution! −22 ≠ 1
4
 

d. −2−2

3∙2−3
= −23

3∙22
= −𝟐𝟐

𝟑𝟑
 

Note: Exponential expressions can be simplified in many ways. For example, to simplify 
2−2

2−3
, we can work out the negative exponents first by moving the powers to a different level, 

23

22
 , and then reduce the common factors as shown in the example; or we can employ the 

quotient rule of powers to obtain 
2−2

2−3
= 2−2−(−3) = 2−2+3 = 21 = 2. 

Solution 

1 
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Simplifying Exponential Expressions Involving Negative Exponents 

Simplify the given expression. Leave the answer with only positive exponents. 

a. 4𝑥𝑥−5 b. (𝑥𝑥 + 𝑦𝑦)−1

c. 𝑥𝑥−1 + 𝑦𝑦−1 d. (−23𝑥𝑥−2)−2

e. 𝑥𝑥−4𝑦𝑦2

𝑥𝑥2𝑦𝑦−5
f. �−4𝑚𝑚

5𝑛𝑛3

24𝑚𝑚𝑛𝑛−6
�
−2

a. 4𝑥𝑥−5 = 4
𝑥𝑥5

b. (𝑥𝑥 + 𝑦𝑦)−1 = 1
𝑥𝑥+𝑦𝑦

c. 𝑥𝑥−1 + 𝑦𝑦−1 = 1
𝑥𝑥

+ 1
𝑦𝑦

d. (−23𝑥𝑥−2)−2 = �−2
3

𝑥𝑥2
�
−2

= � 𝑥𝑥2

−23
�
2

= �𝑥𝑥2�
2

(−1)2(23)2
= 𝑥𝑥4

26

e. 𝑥𝑥−4𝑦𝑦2

𝑥𝑥2𝑦𝑦−5
= 𝑦𝑦2𝑦𝑦5

𝑥𝑥2𝑥𝑥4
= 𝑦𝑦7

𝑥𝑥6
 

f. �−4𝑚𝑚
5𝑛𝑛3

24𝑚𝑚𝑛𝑛−6
�
−2

= �−𝑚𝑚
4𝑛𝑛3𝑛𝑛6

6
�
−2

= �(−1)𝑚𝑚4𝑛𝑛9

6
�
−2

= � 6
(−1)𝑚𝑚4𝑛𝑛9

�
2

= 36
𝑚𝑚8𝑛𝑛18

Scientific Notation 

Integral exponents allow us to record numbers with a very large or very small absolute 
value in a shorter, more convenient form.  

For example, the average distance from the Sun to the Saturn is 1,430,000,000 km, which 
can be recorded as 1.43 ∙ 1,000,000,000 or more concisely as 1.43 ∙ 109.  

Similarly, the mass of an electron is 0.0000000000000000000000000009 grams, which 
can be recorded as 9 ∙ 0.0000000000000000000000000001, or more concisely as  9 ∙
10−28. 

This more concise representation of numbers is called scientific notation and it is 
frequently used in sciences and engineering. 

Definition 1.1 A real number 𝒙𝒙 is written in scientific notation iff  𝒙𝒙 = 𝒂𝒂 ∙ 𝟏𝟏𝟏𝟏𝒏𝒏 , 
where the coefficient 𝒂𝒂 is such that |𝒂𝒂| ∈ [𝟏𝟏,𝟏𝟏𝟏𝟏), and the exponent 𝒏𝒏 is an integer. 

Solution exponent −5 
refers to 𝑥𝑥 only! 

these expressions are 
NOT equivalent! 

work out the negative 
exponents inside the 

bracket 

work out the negative 
exponents outside the 

bracket 

a “−“ sign can be 
treated as a factor 

of −1 

power rule – multiply exponents 

product rule – add exponents 

6 

4 

(−1)2 = 1 
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Converting Numbers to Scientific Notation 

Convert each number to scientific notation.  

a. 520,000 b. −0.000102 c. 12.5 ∙ 103

a. To represent 520,000 in scientific notation, we place a decimal point after the first
nonzero digit,

5 . 2 0 0 0 0 

and  then count the number of decimal places needed for the decimal point to move to 
its original position, which by default was after the last digit. In our example the 
number of places we need to move the decimal place is 5. This means that 5.2 needs 
to be multiplied by 105 in order to represent the value of 520,000. So, 𝟓𝟓𝟓𝟓𝟓𝟓,𝟎𝟎𝟎𝟎𝟎𝟎 =
𝟓𝟓.𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏𝟓𝟓. 

Note: To comply with the scientific notation format, we always place the decimal point 
after the first nonzero digit of the given number. This will guarantee that the coefficient 𝒂𝒂 
satisfies the condition 𝟏𝟏 ≤ |𝒂𝒂| < 𝟏𝟏𝟏𝟏. 

b. As in the previous example, to represent −0.000102 in scientific notation, we place a
decimal point after the first nonzero digit,

− 0 . 0 0 0 1 . 0 2

and  then count the number of decimal places needed for the decimal point to move to 
its original position. In this example, we move the decimal 4 places to the left. So the 
number 1.02 needs to be divided by 104, or equivalently, multiplied by 10−4 in order 
to represent the value of −0.000102. So, −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 = −𝟏𝟏.𝟎𝟎𝟎𝟎 ∙ 𝟏𝟏𝟏𝟏−𝟒𝟒. 

Observation: Notice that moving the decimal to the right corresponds to using a positive 
exponent, as in Example 3a, while moving the decimal to the left corresponds to using a 
negative exponent, as in Example 3b. 

c. Notice that 12.5 ∙ 103 is not in scientific notation as the coefficient 12.5 is not smaller
than 10. To convert 12.5 ∙ 103 to scientific notation, first, convert 12.5 to scientific
notation and then multiply the powers of 10. So,

12.5 ∙ 103 = 1.25 ∙ 10 ∙ 103 = 𝟏𝟏.𝟐𝟐𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏𝟒𝟒 

Solution 

an integer has its 
decimal dot after 

the last digit 

 multiply powers by 
adding exponents 
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Converting from Scientific to Decimal Notation 

Convert each number to decimal notation. 

a. −6.57 ∙ 106 b. 4.6 ∙ 10−7

a. The exponent 6 indicates that the decimal point needs to be moved 6 places to the right.
So,

−6.57 ∙ 106 = −6 . 5 7 _  _  _  _ . = −𝟔𝟔,𝟓𝟓𝟓𝟓𝟓𝟓,𝟎𝟎𝟎𝟎𝟎𝟎

b. The exponent −7 indicates that the decimal point needs to be moved 7 places to the
left. So,

4.6 ∙ 10−7 = 0. _  _  _  _  _  _ 4 . 6 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

Using Scientific Notation in Computations 

Evaluate. Leave the answer in scientific notation. 

a. 6.5 ∙ 107 ∙ 3 ∙ 105 b. 3.6 ∙ 103

9 ∙ 1014

a. Since the product of the coefficients 6.5 ∙ 3 = 19.5 is larger than 10, we convert it to
scientific notation and then multiply the remaining powers of 10. So,

6.5 ∙ 107 ∙ 3 ∙ 105 = 19.5 ∙ 107 ∙ 105 = 1.95 ∙ 10 ∙ 1012 = 𝟏𝟏.𝟗𝟗𝟗𝟗 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

b. Similarly as in the previous example, since the quotient  3.6
9

= 0.4  is smaller than 1,
we convert it to scientific notation and then work out the remaining powers of 10. So,

3.6 ∙  103

9 ∙  1014
= 0.4 ∙ 10−11 = 4 ∙ 10−1 ∙ 10−11 = 𝟒𝟒 ∙ 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏 

Using Scientific Notation to Solve Problems 

Earth is approximately 1.5 ∙ 108 kilometers from the Sun. Estimate the time in days needed 
for a space probe moving at an average rate of 2.4 ∙ 104 km/h to reach the Sun? Assume 
that the probe moves along a straight line. 

Solution 

 fill the empty 
places by zeros 

Solution 

 fill the empty 
places by zeros 

 divide powers by 
subtracting exponents 
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To find time 𝑇𝑇 needed for the space probe travelling at the rate 𝑅𝑅 = 2.4 ∙ 104 km/h to reach 
the Sun that is at the distance 𝐷𝐷 = 1.5 ∙ 108 km from Earth, first, we solve the motion 
formula  𝑅𝑅 ∙ 𝑇𝑇 = 𝐷𝐷 for 𝑇𝑇. Since 𝑇𝑇 = 𝐷𝐷

𝑅𝑅
, we calculate, 

𝑇𝑇 =
1.5 ∙ 108

2.4 ∙ 104
= 0.625 ∙ 104 = 6.25 ∙ 103 

So, it will take 6.25 ∙ 103 hours = 6250
24

 days ≅ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟒𝟒 days for the space probe to reach the 
Sun. 

RT.1  Exercises 

True or false. 

1. �3
4
�
−2

= �4
3
�
2

2. 10−4 = 0.00001 3. (0.25)−1 = 4

4. −45 = 1
45

5. (−2)−10 = 4−5 6. 2 ∙ 2 ∙ 2−1 = 1
8

7. 3𝑥𝑥−2 = 1
3𝑥𝑥2

8. −2−2 = −1
4

9. 510

5−12
= 5−2

10. The number 0.68 ∙ 10−5 is written in scientific notation. 11. 98.6 ∙ 107 = 9.86 ∙ 106

12. Match each expression in Row I with the equivalent expression(s) in Row II, if possible.

a. 5−2 b. −5−2 c. (−5)−2 d. −(−5)−2 e. −5 ∙ 5−2

A. 25  B. 1
25

C. −25 D. − 1
5

E. − 1
25

Evaluate each expression. 

13. 4−6 ∙ 43 14. −93 ∙ 9−5 15. 2−3

26
16. 2−7

2−5

17. −3−4

5−3
18. −�3

2�
−2

19. 2−2 + 2−3 20. (2−1 − 3−1)−1

Simplify each expression, if possible. Leave the answer with only positive exponents. Assume that all variables 
represent nonzero real numbers. Keep large numerical coefficients as powers of prime numbers, if possible. 

21. (−2𝑥𝑥−3)(7𝑥𝑥−8) 22. (5𝑥𝑥−2𝑦𝑦3)(−4𝑥𝑥−7𝑦𝑦−2) 23. (9𝑥𝑥−4𝑛𝑛)(−4𝑥𝑥−8𝑛𝑛)

24. (−3𝑦𝑦−4𝑎𝑎)(−5𝑦𝑦−3𝑎𝑎) 25. −4𝑥𝑥−3 26. 𝑥𝑥−4𝑛𝑛

𝑥𝑥6𝑛𝑛

27. 3𝑛𝑛5

𝑛𝑛𝑛𝑛−2 28. 14𝑎𝑎−4𝑏𝑏−3

−8𝑎𝑎8𝑏𝑏−5
29. −18𝑥𝑥−3𝑦𝑦3

−12𝑥𝑥−5𝑦𝑦5

Solution 
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30. (2−1𝑝𝑝−7𝑞𝑞)−4 31. (−3𝑎𝑎2𝑏𝑏−5)−3 32. �5𝑥𝑥
−2

𝑦𝑦3
�
−3

33. �2𝑥𝑥
3𝑦𝑦−2

3𝑦𝑦−3
�
−3

34. � −4𝑥𝑥
−3

5𝑥𝑥−1𝑦𝑦4
�
−4

35. �125𝑥𝑥
2𝑦𝑦−3

5𝑥𝑥4𝑦𝑦−2
�
−5

36. �−200𝑥𝑥
3𝑦𝑦−5

8𝑥𝑥5𝑦𝑦−7
�
−4

37. [(−2𝑥𝑥−4𝑦𝑦−2)−3]−2 38. 
12𝑎𝑎−2�𝑎𝑎−3�−2

6𝑎𝑎7

39. (−2𝑘𝑘)2𝑚𝑚−5

(𝑘𝑘𝑘𝑘)−3
40. �2𝑝𝑝

𝑞𝑞2
�
3
�3𝑝𝑝

4

𝑞𝑞−4
�
−1

41. � −3𝑥𝑥
4𝑦𝑦6

15𝑥𝑥−6𝑦𝑦7
�
−3

42. � −4𝑎𝑎
3𝑏𝑏2

12𝑎𝑎6𝑏𝑏−5
�
−3

43. �−9
−2𝑥𝑥−4𝑦𝑦

3−3𝑥𝑥−3𝑦𝑦2
�
8

44. (4−𝑥𝑥)2𝑦𝑦

45. (5𝑎𝑎)−𝑎𝑎 46. 𝑥𝑥𝑎𝑎𝑥𝑥−𝑎𝑎 47. 9𝑛𝑛2−𝑥𝑥

3𝑛𝑛2−2𝑥𝑥

48. 12𝑥𝑥𝑎𝑎+1

−4𝑥𝑥2−𝑎𝑎
49. �𝑥𝑥𝑏𝑏−1�

3
�𝑥𝑥𝑏𝑏−4�

−2
50. 25𝑥𝑥𝑎𝑎+𝑏𝑏𝑦𝑦𝑏𝑏−𝑎𝑎

−5𝑥𝑥𝑎𝑎−𝑏𝑏𝑦𝑦𝑏𝑏+𝑎𝑎

Convert each number to scientific notation. 

51. 26,000,000,000 52. −0.000132 53. 0.0000000105 54. 705.6

Convert each number to decimal notation. 

55. 6.7 ∙ 108 56. 5.072 ∙ 10−5 57. 2 ∙ 1012 58. 9.05 ∙ 10−9

59. One megabyte of computer memory equals 220 bytes. Using decimal notation, write the number of bytes in
1 megabyte. Then, using scientific notation, approximate this number by rounding the scientific notation
coefficient to two decimals places.

Evaluate. State your answer in scientific notation. 

60. (6.5 ∙ 103)(5.2 ∙ 10−8) 61. (2.34 ∙ 10−5)(5.7 ∙ 10−6)

62. (3.26 ∙ 10−6)(5.2 ∙ 10−8) 63. 4 ∙ 10−7

8 ∙ 10−3

64. 7.5 ∙ 109

2.5 ∙ 104
65. 4 ∙ 10−7

8 ∙ 10−3

66. 0.05 ∙ 16000
0.0004

67. 0.003 ∙ 40,000
0.00012 ∙600

Solve each problem. State your answer in scientific notation. 

68. A light-year is an astronomical unit measuring the distance that light travels in one year. If light travels
approximately 3 ∙ 105 kilometers per second, how long is a light-year in kilometers?

69. In 2018, the national debt in Canada was about 6.7 ∙ 1011 dollars. If the Canadian population in 2018 was
approximately 3.7 ∙ 107, what was the share of this debt per person?
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70. One of the brightest stars in the night sky, Vega, is about 2.365 ∙ 1014 kilometers from Earth. If one light-
year is approximately 9.46 ∙ 1012 kilometers, how many light-years is it from Earth to Vega?

71. The Columbia River discharges its water to the Pacific Ocean at approximately 265,000
ft3/sec. What is the supply of water that comes from the Columbia River in one minute?
in one day? State the answer in scientific notation.

72. Assuming the current trends continue, the population 𝑃𝑃 of Canada, in millions, can be modelled by the
equation 𝑃𝑃 = 34(1.011)𝑥𝑥, where 𝑥𝑥 is the number of years passed after the year 2010. According to this
model, what is the predicted Canadian population for the years 2025 and 2030?

73. The mass of the Moon is 7.348 ∙ 1022 kg while the mass of Earth is 5.976 ∙ 1024 kg. How
many times heavier is Earth than the Moon?

74. Most calculators cannot handle operations on numbers outside of the interval (10−100, 10100). How can we
compute (5 ∙ 10120)3 without the use of a calculator?
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RT2 Rational Expressions and Functions; Multiplication and 
Division of Rational Expressions 

In arithmetic, a rational number is a quotient of two integers with denominator different 
than zero. In algebra, a rational expression, offten called an algebraic fraction, is a quotient 
of two polynomials, also with denominator different than zero. In this section, we will 
examine rational expressions and functions, paying attention to their domains. Then, we 
will simplify, multiply, and divide rational expressions, employing the factoring skills 
developed in Chapter P.  

Rational Expressions and Functions 

Here are some examples of rational expressions: 

− 𝑥𝑥2

2𝑥𝑥𝑥𝑥
, 𝑥𝑥−1, 𝑥𝑥2−4

𝑥𝑥−2
, 8𝑥𝑥2+6𝑥𝑥−5

4𝑥𝑥2+5𝑥𝑥
, 𝑥𝑥−3

3−𝑥𝑥
, 𝑥𝑥2 − 25, 3𝑥𝑥(𝑥𝑥 − 1)−2 

Definition 2.1 A rational expression (algebraic fraction) is a quotient 𝑷𝑷(𝒙𝒙)
𝑸𝑸(𝒙𝒙)

 of two polynomials 𝑃𝑃(𝑥𝑥) and 

𝑄𝑄(𝑥𝑥), where 𝑄𝑄(𝑥𝑥) ≠ 0. Since division by zero is not permitted, a rational expression is 
defined only for the 𝑥𝑥-values that make the denominator of the expression different than 
zero. The set of such 𝑥𝑥-values is referred to as the domain of the expression. 

Note 1: Negative exponents indicate hidden fractions and therefore represent rational 
expressions. For instance, 𝑥𝑥−1 = 1

𝑥𝑥
. 

Note 2: A single polynomial can also be seen as a rational expression because it can be 
considered as a fraction with a denominator of 1. 

For instance, 𝑥𝑥2 − 25 = 𝑥𝑥2−25
1

. 

Definition 2.2 A rational function is a function defined by a rational expression, 

𝒇𝒇(𝒙𝒙) =
𝑷𝑷(𝒙𝒙)
𝑸𝑸(𝒙𝒙). 

The domain of such function consists of all real numbers except for the 𝑥𝑥-values that make 
the denominator 𝑄𝑄(𝑥𝑥) equal to 0. So, the domain 𝑫𝑫 = ℝ ∖ {𝒙𝒙|𝑸𝑸(𝒙𝒙) = 𝟎𝟎} 

For example, the domain of the rational function  𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−3

  is the set of all real 
numbers except for 3 because 3 would make the denominator equal to 0. So, we write 
𝐷𝐷 = ℝ ∖ {3}. Sometimes, to make it clear that we refer to function 𝑓𝑓, we might denote 
the domain of 𝑓𝑓 by 𝐷𝐷𝑓𝑓, rather than just 𝐷𝐷.  

Figure 1 shows a graph of the function 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−3

. Notice that the graph does not 
cross the dashed vertical line whose equation is 𝑥𝑥 =  3. This is because 𝑓𝑓(3) is not 
defined. A closer look at the graphs of rational functions will be given in Section RT5. Figure 1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

3 
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Evaluating Rational Expressions or Functions 

Evaluate the given expression or function for 𝑥𝑥 = −1, 0, 1. If the value cannot be 
calculated, write undefined. 

a. 3𝑥𝑥(𝑥𝑥 − 1)−2 b. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥2+𝑥𝑥

a. If  𝑥𝑥 = −1, then  3𝑥𝑥(𝑥𝑥 − 1)−2 = 3(−1)(−1 − 1)−2 = −3(−2)−2 = −3
(−2)2 = −𝟑𝟑

𝟒𝟒.

If  𝑥𝑥 = 0, then  3𝑥𝑥(𝑥𝑥 − 1)−2 = 3(0)(0− 1)−2 = 𝟎𝟎. 

If 𝑥𝑥 = 1, then  3𝑥𝑥(𝑥𝑥 − 1)−2 = 3(1)(1 − 1)−2 = 3 ∙ 0−2 = 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖, as division 
by zero is not permitted. 

Note: Since the expression 3𝑥𝑥(𝑥𝑥 − 1)−2 cannot be evaluated at 𝑥𝑥 = 1, the number 1 does 
not belong to its domain. 

b. 𝑓𝑓(−1) = −1
(−1)2+(−1) = −1

1−1
= 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖. 

𝑓𝑓(0) = 0
(0)2+(0) = 0

0
= 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖. 

𝑓𝑓(1) = 1
(1)2+(1) = 𝟏𝟏

𝟐𝟐
. 

Observation: Function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥2+𝑥𝑥

 is undefined at 𝑥𝑥 = 0 and 𝑥𝑥 = −1. This is because 

the denominator 𝑥𝑥2 + 𝑥𝑥 = 𝑥𝑥(𝑥𝑥 + 1) becomes zero when the 𝑥𝑥-value is 0 or −1. 

Finding Domains of Rational Expressions or Functions 

Find the domain of each expression or function.  

a. 4
2𝑥𝑥+5

b. 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥

c. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−4
𝑥𝑥2+4

d. 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥−1
𝑥𝑥2−4𝑥𝑥−5

a. The domain of  4
2𝑥𝑥+5

  consists of all real numbers except for those that would make 
the denominator 2𝑥𝑥 + 5 equal to zero.  To find these numbers, we solve the equation 

2𝑥𝑥 + 5 = 0 
2𝑥𝑥 = −5 
𝑥𝑥 = −𝟓𝟓

𝟐𝟐
 

Solution 

Solution 
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So, the domain of 4
2𝑥𝑥+5 2
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 is the set of all real numbers except for − 5. This can be 

recorded in set notation as ℝ ∖ �− 𝟓𝟓
𝟐𝟐
�, or in set-builder notation as �𝒙𝒙�𝒙𝒙 ≠ −𝟓𝟓

𝟐𝟐
�, or in 

interval notation as �−∞,−𝟓𝟓
𝟐𝟐
� ∪ �− 𝟓𝟓

𝟐𝟐
,∞�. 

b. To find the domain of 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥

, we want to exclude from the set of real numbers all the 
𝑥𝑥-values that would make the denominator 𝑥𝑥2 − 2𝑥𝑥 equal to zero. After solving the 
equation 

𝑥𝑥2 − 2𝑥𝑥 = 0 
via factoring 

𝑥𝑥(𝑥𝑥 − 2) = 0 
and zero-product property 

𝑥𝑥 = 𝟎𝟎   or   𝑥𝑥 = 𝟐𝟐, 

we conclude that the domain is the set of all real numbers except for 0 and 2, which 
can be recorded as ℝ ∖ {𝟎𝟎,𝟐𝟐}.  This is because the 𝑥𝑥-values of 0 or 2 make the 
denominator of the expression 𝑥𝑥−2

𝑥𝑥2−2𝑥𝑥
 equal to zero. 

c. To find the domain of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−4
𝑥𝑥2+4

, we first look for all the 𝑥𝑥-values that 
make the denominator 𝑥𝑥2 + 4 equal to zero. However, 𝑥𝑥2 + 4, as a sum of squares, is 
never equal to 0. So, the domain of function 𝑓𝑓 is the set of all real numbers ℝ. 

d. To find the domain of the function 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥−1
𝑥𝑥2−4𝑥𝑥−5

, we first solve the equation 
𝑥𝑥2 − 4𝑥𝑥 − 5 = 0 to find which 𝑥𝑥-values make the denominator equal to zero. After 
factoring, we obtain  

(𝑥𝑥 − 5)(𝑥𝑥 + 1) = 0 

which results in           𝑥𝑥 = 5  and  𝑥𝑥 = −1 

Thus, the domain of 𝑔𝑔 equals to 𝑫𝑫𝒈𝒈 = ℝ ∖ {−𝟏𝟏,𝟓𝟓}. 

Equivalent Expressions 

Definition 2.3 Two expressions are equivalent in the common domain iff (if and only if) they produce 
the same values for every input from the domain. 

Consider the expression 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥

from Example 2b. Notice that this expression can be 

simplified to 𝑥𝑥−2
𝑥𝑥(𝑥𝑥−2) = 1

𝑥𝑥
 by reducing common factors in the numerator and the

denominator. However, the domain of the simplified fraction, 1
𝑥𝑥
, is the set ℝ ∖ {0}, which

is different than the domain of the original fraction, ℝ ∖ {0,2}. Notice that for 𝑥𝑥 = 2, the 

expression 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥

is undefined while the value of the expression 1
𝑥𝑥
 is 1

2
. So, the two 

expressions are not equivalent in the set of real numbers. However, if the domain of 1
𝑥𝑥
 is



76   | Section RT2 

Rational Expressions and Functions 

resticted to the set ℝ ∖ {0,2}, then the two expressions 
produce the same values and as such, they are equivalent. 
We say that the two expressions are equivalent in the 
common domain.  

The above situation can be illustrated by graphing the related 
functions, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2

𝑥𝑥2−2𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = 1
𝑥𝑥
, as in Figure 2. The 

graphs of both functions are exactly the same except for the 
hole in the graph of 𝑓𝑓 at the point �2, 1

2
�. 

So, from now on, when writing statements like 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥

= 1
𝑥𝑥
, we keep in mind that they apply

only to real numbers which make both denominators different than zero. Thus, by saying 
in short that two expressions are equivalent, we really mean that they are equivalent in 
the common domain.  

Note:  The domain of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥 = 𝑥𝑥−2

𝑥𝑥(𝑥𝑥−2)
= 1

𝑥𝑥 is still ℝ ∖ {𝟎𝟎,𝟐𝟐}, even though the 

(𝑥𝑥 − 2) term was simplified. 

The process of simplifying expressions involves creating equivalent expressions. In the 
case of rational expressions, equivalent expressions can be obtained by multiplying or 
dividing the numerator and denominator of the expression by the same nonzero polynomial. 
For example,  

−𝒙𝒙 − 𝟑𝟑
−𝟓𝟓𝟓𝟓

=
(−𝑥𝑥 − 3) ∙ (−1)

(−5𝑥𝑥) ∙ (−1) =
𝒙𝒙 + 𝟑𝟑
𝟓𝟓𝟓𝟓

𝒙𝒙 − 𝟑𝟑
𝟑𝟑 − 𝒙𝒙

=
(𝑥𝑥 − 3)

−1(𝑥𝑥 − 3) =
1
−1

= −𝟏𝟏 

To simplify a rational expression: 

 Factor the numerator and denominator completely.
 Eliminate all common factors by following the property of multiplicative identity.

Do not eliminate common terms - they must be factors!

Simplifying Rational Expressions 

Simplify each expression.  

a. 7𝑎𝑎2𝑏𝑏2

21𝑎𝑎3𝑏𝑏−14𝑎𝑎3𝑏𝑏2
b. 𝑥𝑥2−9

𝑥𝑥2−6𝑥𝑥+9
c. 20𝑥𝑥−15𝑥𝑥2

15𝑥𝑥3−5𝑥𝑥2−20𝑥𝑥

a. First, we factor the denominator and then reduce the common factors. So,

7𝑎𝑎2𝑏𝑏2

21𝑎𝑎3𝑏𝑏 − 14𝑎𝑎3𝑏𝑏2
=

7𝑎𝑎2𝑏𝑏2

7𝑎𝑎3𝑏𝑏(3 − 2𝑏𝑏) =
𝒃𝒃

𝒂𝒂(𝟑𝟑 − 𝟐𝟐𝟐𝟐) 

Solution 

𝑔𝑔(𝑥𝑥) =
1
𝑥𝑥

𝑥𝑥 

1 

2 

𝑓𝑓(𝑥𝑥) =
𝑥𝑥 − 2
𝑥𝑥2 − 2𝑥𝑥

𝑥𝑥 

1 

2 

Figure 2 

1 

1 
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b. As before, we factor and then reduce. So,

𝑥𝑥2 − 9
𝑥𝑥2 − 6𝑥𝑥 + 9

=
(𝑥𝑥 − 3)(𝑥𝑥 + 3)

(𝑥𝑥 − 3)2 =
𝒙𝒙 + 𝟑𝟑
𝒙𝒙 − 𝟑𝟑

c. Factoring and reducing the numerator and denominator gives us

20𝑥𝑥 − 15𝑥𝑥2

15𝑥𝑥3 − 5𝑥𝑥2 − 20𝑥𝑥
=

5𝑥𝑥(4 − 3𝑥𝑥)
5𝑥𝑥(3𝑥𝑥2 − 𝑥𝑥 − 4)

=
4− 3𝑥𝑥

(3𝑥𝑥 − 4)(𝑥𝑥 + 1)

Since  4−3𝑥𝑥
3𝑥𝑥−4

= −(3𝑥𝑥−4)
3𝑥𝑥−4

= −1, the above expression can be reduced further to 

4 − 3𝑥𝑥
(3𝑥𝑥 − 4)(𝑥𝑥 + 1) =

−𝟏𝟏
𝒙𝒙 + 𝟏𝟏

Notice:  An opposite expression in the numerator and denominator can be reduced to −1. 
For example, since 𝑎𝑎 − 𝑏𝑏 is opposite to 𝑏𝑏 − 𝑎𝑎, then 

𝒂𝒂−𝒃𝒃
𝒃𝒃−𝒂𝒂

= −𝟏𝟏, as long as 𝑎𝑎 ≠ 𝑏𝑏. 

Caution:  Note that 𝑎𝑎 − 𝑏𝑏 is NOT opposite to 𝑎𝑎 + 𝑏𝑏 ! 

Multiplication and Division of Rational Expressions 

Recall that to multiply common fractions, we multiply their numerators and denominators, 
and then simplify the resulting fraction. Multiplication of algebraic fractions is performed 
in a similar way.  

To multiply rational expressions: 

 factor each numerator and denominator completely,
 reduce all common factors in any of the numerators and denominators,
 multiply the remaining expressions by writing the product of their numerators over

the product of their denominators.
For instance,

Multiplying Algebraic Fractions 

Multiply and simplify. Assume nonzero denominators. 

a. 2𝑥𝑥2𝑦𝑦3

3𝑥𝑥𝑦𝑦2
∙ �2𝑥𝑥

3𝑦𝑦�2

2(𝑥𝑥𝑥𝑥)3 b. 𝑥𝑥3−𝑦𝑦3

𝑥𝑥+𝑦𝑦
∙ 3𝑥𝑥+3𝑦𝑦
𝑥𝑥2−𝑦𝑦2

Neither 𝑥𝑥 nor 3 can be 
reduced, as they are 

NOT factors ! 1

−1 

2 

3𝑥𝑥
𝑥𝑥2 + 5𝑥𝑥

∙
3𝑥𝑥 + 15

6𝑥𝑥
=

3𝑥𝑥
𝑥𝑥(𝑥𝑥 + 5) ∙

3(𝑥𝑥 + 5)
6𝑥𝑥

=
3

2𝑥𝑥
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a. To multiply the two algebraic fractions, we use appropriate rules of powers to simplify
each fraction, and then reduce all the remaining common factors. So,

2𝑥𝑥2𝑦𝑦3

3𝑥𝑥𝑦𝑦2
∙

(2𝑥𝑥3𝑦𝑦)2

2(𝑥𝑥𝑥𝑥)3 =
2𝑥𝑥𝑥𝑥

3
∙

4𝑥𝑥6𝑦𝑦2

2𝑥𝑥3𝑦𝑦3
=

2𝑥𝑥𝑥𝑥 ∙ 2𝑥𝑥3

3 ∙ 𝑦𝑦
=
𝟒𝟒𝒙𝒙𝟒𝟒

𝟑𝟑
=
𝟒𝟒
𝟑𝟑
𝒙𝒙𝟒𝟒 

b. After factoring and simplifying, we have

𝑥𝑥3 − 𝑦𝑦3

𝑥𝑥 + 𝑦𝑦
∙

3𝑥𝑥 + 3𝑦𝑦
𝑥𝑥2 − 𝑦𝑦2

=
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥2 + 𝑥𝑥𝑥𝑥 + 𝑦𝑦2)

𝑥𝑥 + 𝑦𝑦
∙

3(𝑥𝑥 + 𝑦𝑦)
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) =

𝟑𝟑�𝒙𝒙𝟐𝟐 + 𝒙𝒙𝒙𝒙+ 𝒚𝒚𝟐𝟐�
𝒙𝒙 + 𝒚𝒚

To divide rational expressions, multiply the first, the dividend, by the reciprocal of the 
second, the divisor.  

For instance, 

5𝑥𝑥 − 10
3𝑥𝑥

÷
3𝑥𝑥 − 6

2𝑥𝑥2
=

5𝑥𝑥 − 10
3𝑥𝑥

 ∙  
2𝑥𝑥2

3𝑥𝑥 − 6
=

5(𝑥𝑥 − 2)
3𝑥𝑥

∙
2𝑥𝑥2

3(𝑥𝑥 − 2) =
10𝑥𝑥

9

Dividing Algebraic Fractions 

Perform operations and simplify. Assume nonzero denominators. 

a. 2𝑥𝑥2+2𝑥𝑥
𝑥𝑥−1

÷ (𝑥𝑥 + 1) b. 𝑥𝑥2−25
𝑥𝑥2+5𝑥𝑥+4

÷ 𝑥𝑥2−10𝑥𝑥+25
2𝑥𝑥2+8𝑥𝑥

∙ 𝑥𝑥
2+𝑥𝑥
4𝑥𝑥2

a. To divide by (𝑥𝑥 + 1) we multiply by the reciprocal 1
(𝑥𝑥+1).  So,

2𝑥𝑥2 + 2𝑥𝑥
𝑥𝑥 − 1

÷ (𝑥𝑥 + 1) =
2𝑥𝑥(𝑥𝑥 + 1)
𝑥𝑥 − 1

∙
1

(𝑥𝑥 + 1) =
2𝑥𝑥
𝑥𝑥 − 1

b. The order of operations indicates to perform the division first. To do this, we convert
the division into multiplication by the reciprocal of the middle expression. Therefore,

𝑥𝑥2 − 25
𝑥𝑥2 + 5𝑥𝑥 + 4

÷
𝑥𝑥2 − 10𝑥𝑥 + 25

2𝑥𝑥2 + 8𝑥𝑥
∙
𝑥𝑥2 + 𝑥𝑥

4𝑥𝑥2

=
(𝑥𝑥 − 5)(𝑥𝑥 + 5)
(𝑥𝑥 + 4)(𝑥𝑥 + 1) ∙

2𝑥𝑥2 + 8𝑥𝑥
𝑥𝑥2 − 10𝑥𝑥 + 25

∙
𝑥𝑥(𝑥𝑥 + 1)

4𝑥𝑥2
 

=
(𝑥𝑥 − 5)(𝑥𝑥 + 5)

(𝑥𝑥 + 4) ∙
2𝑥𝑥(𝑥𝑥 + 4)
(𝑥𝑥 − 5)2 ∙

1
4𝑥𝑥

=
(𝒙𝒙+ 𝟓𝟓)
𝟐𝟐(𝒙𝒙 − 𝟓𝟓)

Solution 

 follow multiplication 
rules 

Solution 

 multiply by 
the reciprocal 

equivalent answers 

1 

1 1 3 

1 

2 

 Recall:      𝒙𝒙𝟑𝟑 − 𝒚𝒚𝟑𝟑 =     
(𝒙𝒙 − 𝒚𝒚)�𝒙𝒙𝟐𝟐 + 𝒙𝒙𝒙𝒙 + 𝒚𝒚𝟐𝟐� 

𝒙𝒙𝟐𝟐 − 𝒚𝒚𝟐𝟐 = 
(𝒙𝒙 + 𝒚𝒚)(𝒙𝒙 − 𝒚𝒚) 

1

1 

2

Reduction of common factors can be 
done gradually, especially if there are 
many common factors to divide out. 
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RT.2  Exercises 

True or false. 

1. 𝑓𝑓(𝑥𝑥) = 4
√𝑥𝑥−4

 is a rational function. 2. The domain of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2
4

 is the set of all real numbers. 

3. 𝑥𝑥−3
4−𝑥𝑥

 is equivalent to  −𝑥𝑥−3
𝑥𝑥−4

. 4. 𝑛𝑛2+1
𝑛𝑛2−1

 is equivalent to  𝑛𝑛+1
𝑛𝑛−1

. 

Given the rational function f, find 𝑓𝑓(−1), 𝑓𝑓(0), and 𝑓𝑓(2). 

5. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥−2

6. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥
3𝑥𝑥−𝑥𝑥2

7. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2
𝑥𝑥2+𝑥𝑥−6

For each rational function, find all numbers that are not in the domain. Then give the domain, using both set 
notation and interval notation. 

8. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥+2

9. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥
𝑥𝑥−6

10. ℎ(𝑥𝑥) = 2𝑥𝑥−1
3𝑥𝑥+7

11. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥+2
5𝑥𝑥−4

12. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥+2
𝑥𝑥2−4

13. ℎ(𝑥𝑥) = 𝑥𝑥−2
𝑥𝑥2+4

14. 𝑓𝑓(𝑥𝑥) = 5
3𝑥𝑥−𝑥𝑥2

15. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥2+𝑥𝑥−6
𝑥𝑥2+12𝑥𝑥+35

16. ℎ(𝑥𝑥) = 7
|4𝑥𝑥−3|

17. Which rational expressions are equivalent and what is their simplest form?

a. 2𝑥𝑥+3
2𝑥𝑥−3

b. 2𝑥𝑥−3
3−2𝑥𝑥

   c. 2𝑥𝑥+3
3+2𝑥𝑥

  d. 2𝑥𝑥+3
−2𝑥𝑥−3

e. 3−2𝑥𝑥
2𝑥𝑥−3

18. Which rational expressions can be simplified?

a. 𝑥𝑥2+2
𝑥𝑥2

b. 𝑥𝑥2+2
2

c. 𝑥𝑥2−𝑥𝑥
𝑥𝑥2

d. 𝑥𝑥2−𝑦𝑦2

𝑦𝑦2
e. 𝑥𝑥

𝑥𝑥2−𝑥𝑥

Simplify each expression, if possible. 

19. 24𝑎𝑎3𝑏𝑏
3𝑎𝑎𝑏𝑏3

20. −18𝑥𝑥2𝑦𝑦3

8𝑥𝑥3𝑦𝑦
21. 7−𝑥𝑥

𝑥𝑥−7
22. 𝑥𝑥+2

𝑥𝑥−2

23. 𝑎𝑎−5
−5+𝑎𝑎

24. 
(3−𝑦𝑦)(𝑥𝑥+1)
(𝑦𝑦−3)(𝑥𝑥−1) 25. 12𝑥𝑥−15

21
26. 18𝑎𝑎−2

22

27. 4𝑦𝑦−12
4𝑦𝑦+12

28. 7𝑥𝑥+14
7𝑥𝑥−14

29. 6𝑚𝑚+18
7𝑚𝑚+21

30. 3𝑧𝑧2+𝑧𝑧
18𝑧𝑧+6

31. 𝑚𝑚2−25
20−4𝑚𝑚

32. 9𝑛𝑛2−3
4−12𝑛𝑛2

33. 𝑡𝑡2−25
𝑡𝑡2−10𝑡𝑡+25

34. 𝑝𝑝2−36
𝑝𝑝2+12𝑡𝑡+36
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35. 𝑥𝑥2−9𝑥𝑥+8
𝑥𝑥2+3𝑥𝑥−4

36. 𝑝𝑝2+8𝑝𝑝−9
𝑝𝑝2−5𝑝𝑝+4

37. 𝑥𝑥3−𝑦𝑦3

𝑥𝑥2−𝑦𝑦2
38. 𝑏𝑏2−𝑎𝑎2

𝑎𝑎3−𝑏𝑏3

Perform operations and simplify. Assume nonzero denominators. 

39. 18𝑎𝑎4

5𝑏𝑏2
∙ 25𝑏𝑏

4

9𝑎𝑎3
40. 28

𝑥𝑥𝑥𝑥
÷ 63𝑥𝑥3

2𝑦𝑦2
41. 12𝑥𝑥

49(𝑥𝑥𝑦𝑦2)3 ∙
(7𝑥𝑥𝑥𝑥)2

8

42. 𝑥𝑥+1
2𝑥𝑥−3

∙ 2𝑥𝑥−3
2𝑥𝑥

43. 10𝑎𝑎
6𝑎𝑎−12

∙ 20𝑎𝑎−40
30𝑎𝑎3

44. 𝑎𝑎2−1
4𝑎𝑎

∙ 2
1−𝑎𝑎

45. 𝑦𝑦2−25
4𝑦𝑦

∙ 2
5−𝑦𝑦

46. (8𝑥𝑥 − 16) ÷ 3𝑥𝑥−6
10 47. (𝑦𝑦2 − 4) ÷ 2−𝑦𝑦

8𝑦𝑦

48. 3𝑛𝑛−9
𝑛𝑛2−9

∙ (𝑛𝑛3 + 27) 49. 𝑥𝑥2−16
𝑥𝑥2

∙ 𝑥𝑥2−4𝑥𝑥
𝑥𝑥2−𝑥𝑥−12

50. 𝑦𝑦2+10𝑦𝑦+25
𝑦𝑦2−9

∙ 𝑦𝑦
2−3𝑦𝑦
𝑦𝑦+5

51. 𝑏𝑏−3
𝑏𝑏2−4𝑏𝑏+3

÷ 𝑏𝑏2−𝑏𝑏
𝑏𝑏−1

52. 𝑥𝑥2−6𝑥𝑥+9
𝑥𝑥2+3𝑥𝑥

÷ 𝑥𝑥2−9
𝑥𝑥

53. 𝑥𝑥2−2𝑥𝑥
3𝑥𝑥2−5𝑥𝑥−2

∙ 9𝑥𝑥2−4
9𝑥𝑥2−12𝑥𝑥+4

54. 𝑡𝑡2−49
𝑡𝑡2+4𝑡𝑡−21

∙ 𝑡𝑡
2+8𝑡𝑡+15
𝑡𝑡2−2𝑡𝑡−35

55. 𝑎𝑎3−𝑏𝑏3

𝑎𝑎2−𝑏𝑏2
÷ 2𝑎𝑎−2𝑏𝑏

2𝑎𝑎+2𝑏𝑏
56. 64𝑥𝑥3+1

4𝑥𝑥2−100
∙ 4𝑥𝑥+20
64𝑥𝑥2−16𝑥𝑥+4

57. 𝑥𝑥3𝑦𝑦−64𝑦𝑦
𝑥𝑥3𝑦𝑦+64𝑦𝑦

÷ 𝑥𝑥2𝑦𝑦2−16𝑦𝑦2

𝑥𝑥2𝑦𝑦2−4𝑥𝑥𝑦𝑦2+16𝑦𝑦2
58. 𝑝𝑝3−27𝑞𝑞3

𝑝𝑝2+𝑝𝑝𝑝𝑝−12𝑞𝑞2
∙ 𝑝𝑝

2−2𝑝𝑝𝑝𝑝−24𝑞𝑞2

𝑝𝑝2−5𝑝𝑝𝑝𝑝−6𝑞𝑞2

59. 4𝑥𝑥2−9𝑦𝑦2

8𝑥𝑥3−27𝑦𝑦3
∙ 4𝑥𝑥

2+6𝑥𝑥𝑥𝑥+9𝑦𝑦2

4𝑥𝑥2+12𝑥𝑥𝑥𝑥+9𝑦𝑦2
60. 2𝑥𝑥2+𝑥𝑥−1

6𝑥𝑥2+𝑥𝑥−2
÷ 2𝑥𝑥2+5𝑥𝑥+3

6𝑥𝑥2+13𝑥𝑥+6

61. 6𝑥𝑥2−13𝑥𝑥+6
14𝑥𝑥2−25𝑥𝑥+6

÷ 14−21𝑥𝑥
49𝑥𝑥2+7𝑥𝑥−6

62. 4𝑦𝑦2−12𝑦𝑦+36
27−3𝑦𝑦2

÷ (𝑦𝑦3 + 27) 

63. 3𝑦𝑦
𝑥𝑥2

÷ 𝑦𝑦2

𝑥𝑥
÷ 𝑦𝑦

5𝑥𝑥
64. 𝑥𝑥+1

𝑦𝑦−2
÷ 2𝑥𝑥+2

𝑦𝑦−2
÷ 𝑥𝑥

𝑦𝑦

65. 𝑎𝑎2−4𝑏𝑏2

𝑎𝑎+2𝑏𝑏
÷ (𝑎𝑎 + 2𝑏𝑏) ∙ 2𝑏𝑏

𝑎𝑎−2𝑏𝑏
66. 9𝑥𝑥2

𝑥𝑥2−16𝑦𝑦2
÷ 1

𝑥𝑥2+4𝑥𝑥𝑥𝑥
∙ 𝑥𝑥−4𝑦𝑦

3𝑥𝑥

67. 𝑥𝑥2−25
𝑥𝑥−4

÷ 𝑥𝑥2−2𝑥𝑥−15
𝑥𝑥2−10𝑥𝑥+24

∙ 𝑥𝑥+3
𝑥𝑥2+10𝑥𝑥+25

68. 𝑦𝑦−3
𝑦𝑦2−8𝑦𝑦+16

∙ 𝑦𝑦
2−16
𝑦𝑦+4

÷ 𝑦𝑦2+3𝑦𝑦−18
𝑦𝑦2+11𝑦𝑦+30

Given 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), find 𝑓𝑓(𝑥𝑥) ∙ 𝑔𝑔(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) ÷ 𝑔𝑔(𝑥𝑥). 

69. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−4
𝑥𝑥2+𝑥𝑥

  and  𝑔𝑔(𝑥𝑥) = 2𝑥𝑥
𝑥𝑥+1

70. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3−3𝑥𝑥2

𝑥𝑥+5
and  𝑔𝑔(𝑥𝑥) = 4𝑥𝑥2

𝑥𝑥−3

71. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−7𝑥𝑥+12
𝑥𝑥+3

and  𝑔𝑔(𝑥𝑥) = 9−𝑥𝑥2

𝑥𝑥−4
72. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+6

4−𝑥𝑥2
 and  𝑔𝑔(𝑥𝑥) = 2−𝑥𝑥

𝑥𝑥2+8𝑥𝑥+12
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RT3 Addition and Subtraction of Rational Expressions 

Many real-world applications involve adding or subtracting algebraic fractions. Like in the 
case of common fractions, to add or subtract algebraic fractions, we first need to change 
them equivalently to fractions with the same denominator. Thus, we begin by discussing 
the techniques of finding the least common denominator. 

Least Common Denominator 

The least common denominator (LCD) for fractions with given denominators is the same 
as the least common multiple (LCM) of these denominators. The methods of finding the 
LCD for fractions with numerical denominators were reviewed in Section R3. For example, 

𝐿𝐿𝐿𝐿𝐿𝐿(4,6,8) = 24, 

because 24 is a multiple of 4, 6, and 8, and there is no smaller natural number that would 
be divisible by all three numbers, 4, 6, and 8. 

Suppose the denominators of three algebraic fractions are 4(𝑥𝑥2 − 𝑦𝑦2), −6(𝑥𝑥 + 𝑦𝑦)2, and 
8𝑥𝑥. The numerical factor of the least common multiple is 24. The variable part of the LCM 
is built by taking the product of all the different variable factors from each expression, with 
each factor raised to the greatest exponent that occurs in any of the expressions. In our 
example, since 4(𝑥𝑥2 − 𝑦𝑦2) = 4(𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦), then  

𝐿𝐿𝐿𝐿𝐿𝐿(  4(𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) ,   − 6(𝑥𝑥 + 𝑦𝑦)2,   8𝑥𝑥  ) = 𝟐𝟐𝟐𝟐𝒙𝒙(𝒙𝒙+ 𝒚𝒚)𝟐𝟐(𝒙𝒙 − 𝒚𝒚) 

Notice that we do not worry about the negative sign of the middle expression. This is 
because a negative sign can always be written in front of a fraction or in the numerator 
rather than in the denominator. For example,  

1
−6(𝑥𝑥 + 𝑦𝑦)2 = −

1
6(𝑥𝑥 + 𝑦𝑦)2 =

−1
6(𝑥𝑥 + 𝑦𝑦)2

In summary, to find the LCD for algebraic fractions, follow the steps: 

 Factor each denominator completely.
 Build the LCD for the denominators by including the following as factors:

o LCD of all numerical coefficients,
o all of the different factors from each denominator, with each factor raised to the

greatest exponent that occurs in any of the denominators.
Note: Disregard any factor of −1.

Determining the LCM for the Given Expressions 

Find the LCM for the given expressions.  

a. 12𝑥𝑥3𝑦𝑦  and  15𝑥𝑥𝑦𝑦2(𝑥𝑥 − 1) b. 𝑥𝑥2 − 2𝑥𝑥 − 8  and  𝑥𝑥2 + 3𝑥𝑥 + 2

c. 𝑦𝑦2 − 𝑥𝑥2,  2𝑥𝑥2 − 2𝑥𝑥𝑥𝑥,  and  𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2
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a. Notice that both expressions, 12𝑥𝑥3𝑦𝑦 and 15𝑥𝑥𝑦𝑦2(𝑥𝑥 − 1), are already in factored form.
The 𝐿𝐿𝐿𝐿𝐿𝐿(12,15) = 60, as

 𝟑𝟑 
∙ 

 12  
 4

15
∙ 5 = 𝟔𝟔𝟔𝟔 

The highest power of 𝑥𝑥 is 3, the highest power of 𝑦𝑦 is 2, and (𝑥𝑥 − 1) appears in the 
first power. Therefore, 

𝐿𝐿𝐿𝐿𝐿𝐿�12𝑥𝑥3𝑦𝑦,   15𝑥𝑥𝑦𝑦2(𝑥𝑥 − 1)� = 𝟔𝟔𝟔𝟔𝒙𝒙𝟑𝟑𝒚𝒚𝟐𝟐(𝒙𝒙 − 𝟏𝟏) 

b. To find the LCM of 𝑥𝑥2 − 2𝑥𝑥 − 8 and 𝑥𝑥2 + 3𝑥𝑥 + 2, we factor each expression first:

𝑥𝑥2 − 2𝑥𝑥 − 8 = (𝑥𝑥 − 4)(𝑥𝑥 + 2) 
𝑥𝑥2 + 3𝑥𝑥 + 2 = (𝑥𝑥 + 1)(𝑥𝑥 + 2) 

There are three different factors in these expressions, (𝑥𝑥 − 4), (𝑥𝑥 + 2), and (𝑥𝑥 + 1). 
All of these factors appear in the first power, so 

𝐿𝐿𝐿𝐿𝐿𝐿( 𝑥𝑥2 − 2𝑥𝑥 − 8,   𝑥𝑥2 + 3𝑥𝑥 + 2 ) = (𝒙𝒙 − 𝟒𝟒)(𝒙𝒙+ 𝟐𝟐)(𝒙𝒙 + 𝟏𝟏) 

c. As before, to find the LCM of 𝑦𝑦2 − 𝑥𝑥2, 2𝑥𝑥2 − 2𝑥𝑥𝑥𝑥, and 𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2, we factor
each expression first:

𝑦𝑦2 − 𝑥𝑥2 = (𝑦𝑦 + 𝑥𝑥)(𝑦𝑦 − 𝑥𝑥) = −(𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) 
2𝑥𝑥2 − 2𝑥𝑥𝑦𝑦 = 2𝑥𝑥(𝑥𝑥 − 𝑦𝑦) 
𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2 = (𝑥𝑥 + 𝑦𝑦)2 

Since the factor of −1 can be disregarded when finding the LCM, the opposite factors 
can be treated as the same by factoring the −1 out of one of the expressions. So, there 
are four different factors to consider, 2, 𝑥𝑥, (𝑥𝑥 + 𝑦𝑦), and (𝑥𝑥 − 𝑦𝑦). The highest power of 
(𝑥𝑥 + 𝑦𝑦) is 2 and the other factors appear in the first power. Therefore, 

𝐿𝐿𝐿𝐿𝐿𝐿( 𝑦𝑦2 − 𝑥𝑥2,   2𝑥𝑥2 − 2𝑥𝑥𝑥𝑥,   𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2 ) = 𝟐𝟐𝟐𝟐(𝒙𝒙 − 𝒚𝒚)(𝒙𝒙 + 𝒚𝒚)𝟐𝟐 

Addition and Subtraction of Rational Expressions 

Observe addition and subtraction of common fractions, as review in Section R3. 

1
2

+
2
3
−

5
6

=
1 ∙ 3 + 2 ∙ 2− 5

6
=

3 + 4− 5
6

=
2
6

=
𝟏𝟏
𝟑𝟑

Solution 

divide by 3 

no more common factors, so we 
multiply the numbers in the letter L 

notice that (𝑥𝑥 + 2) is taken 
only once! 

as  𝒚𝒚 − 𝒙𝒙 = −(𝒙𝒙− 𝒚𝒚) 
and   𝒚𝒚 + 𝒙𝒙 = 𝒙𝒙 + 𝒚𝒚 

convert fractions to the 
lowest common denominator 

work out the numerator 

simplify, if possible 
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To add or subtract algebraic fractions, follow the steps: 

 Factor the denominators of all algebraic fractions completely.
 Find the LCD of all the denominators.
 Convert each algebraic fraction to the lowest common denominator found in the

previous step and write the sum (or difference) as a single fraction.
 Simplify the numerator and the whole fraction, if possible.

Adding and Subtracting Rational Expressions 

Perform the operations and simplify if possible. 

a. 𝑎𝑎
5
− 3𝑏𝑏

2𝑎𝑎
b. 𝑥𝑥

𝑥𝑥−𝑦𝑦
+ 𝑦𝑦

𝑦𝑦−𝑥𝑥

c. 3𝑥𝑥2+3𝑥𝑥𝑥𝑥
𝑥𝑥2−𝑦𝑦2

− 2−3𝑥𝑥
𝑥𝑥−𝑦𝑦

d. 𝑦𝑦+1
𝑦𝑦2−7𝑦𝑦+6

+ 𝑦𝑦−1
𝑦𝑦2−5𝑦𝑦−6

e. 2𝑥𝑥
𝑥𝑥2−4

+ 5
2−𝑥𝑥

− 1
2+𝑥𝑥

f. (2𝑥𝑥 − 1)−2 + (2𝑥𝑥 − 1)−1

a. Since 𝐿𝐿𝐿𝐿𝐿𝐿(5, 2𝑎𝑎) = 10𝑎𝑎, we would like to rewrite expressions, 𝑎𝑎
5
 and 3𝑏𝑏

2𝑎𝑎
, so that they

have a denominator of 10𝑎𝑎. This can be done by multiplying the numerator and
denominator of each expression by the factors of 10𝑎𝑎 that are missing in each
denominator. So, we obtain

𝑎𝑎
5 −

3𝑏𝑏
2𝑎𝑎 =

𝑎𝑎
5 ∙

2𝑎𝑎
2𝑎𝑎 −

3𝑏𝑏
2𝑎𝑎 ∙

5
5 =

𝟐𝟐𝒂𝒂𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏

b. Notice that the two denominators, 𝑥𝑥 − 𝑦𝑦 and 𝑦𝑦 − 𝑥𝑥, are opposite expressions. If we
write 𝑦𝑦 − 𝑥𝑥 as −(𝑥𝑥 − 𝑦𝑦), then

𝑥𝑥
𝑥𝑥 − 𝑦𝑦 +

𝑦𝑦
𝑦𝑦 − 𝑥𝑥 =

𝑥𝑥
𝑥𝑥 − 𝑦𝑦 +

𝑦𝑦
− (𝑥𝑥 − 𝑦𝑦) =

𝑥𝑥
𝑥𝑥 − 𝑦𝑦 −

𝑦𝑦
𝑥𝑥 − 𝑦𝑦 =

𝑥𝑥 − 𝑦𝑦
𝑥𝑥 − 𝑦𝑦 = 𝟏𝟏 

c. To find the LCD, we begin by factoring 𝑥𝑥2 − 𝑦𝑦2 = (𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦). Since this
expression includes the second denominator as a factor, the LCD of the two fractions
is (𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦). So, we calculate

3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥
𝑥𝑥2 − 𝑦𝑦2 −

2 − 3𝑥𝑥
𝑥𝑥 − 𝑦𝑦 =

(3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥) ∙ 1− (2− 3𝑥𝑥) ∙ (𝑥𝑥 + 𝑦𝑦)
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) = 

3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥 − (2𝑥𝑥 + 2𝑦𝑦 − 3𝑥𝑥2 − 3𝑥𝑥𝑥𝑥)
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) =

3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥 − 2𝑥𝑥 − 2𝑦𝑦 + 3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) = 

Solution 

 keep the bracket 
after a “−“ sign 

 combine the signs 

Multiplying the numerator 
and denominator of a fraction 

by the same factor is 
equivalent to multiplying the 
whole fraction by 1, which 

does not change the value of 
the fraction. 
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𝟔𝟔𝒙𝒙𝟐𝟐 + 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) =

2(3𝑥𝑥2 + 3𝑥𝑥𝑥𝑥 − 𝑥𝑥 − 𝑦𝑦)
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) =

2�3𝑥𝑥(𝑥𝑥 + 𝑦𝑦)− (𝑥𝑥 + 𝑦𝑦)�
(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦)

=
2(𝑥𝑥 + 𝑦𝑦)(3𝑥𝑥 − 1)

(𝑥𝑥 − 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) =
𝟐𝟐(𝟑𝟑𝟑𝟑 − 𝟏𝟏)

(𝒙𝒙 − 𝒚𝒚)  

d. To find the LCD, we first factor each denominator. Since

𝑦𝑦2 − 7𝑦𝑦 + 6 = (𝑦𝑦 − 6)(𝑦𝑦 − 1)  and  𝑦𝑦2 − 5𝑦𝑦 − 6 = (𝑦𝑦 − 6)(𝑦𝑦 + 1), 

then 𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑦𝑦− 6)(𝑦𝑦− 1)(𝑦𝑦 + 1) and we calculate 

𝑦𝑦 + 1
𝑦𝑦2 − 7𝑦𝑦 + 6 +

𝑦𝑦 − 1
𝑦𝑦2 − 5𝑦𝑦 − 6 =

𝑦𝑦 + 1
(𝑦𝑦 − 6)(𝑦𝑦 − 1) +

𝑦𝑦 − 1
(𝑦𝑦− 6)(𝑦𝑦+ 1) =

(𝑦𝑦 + 1) ∙ (𝑦𝑦 + 1) + (𝑦𝑦 − 1) ∙ (𝑦𝑦 − 1)
(𝑦𝑦 − 6)(𝑦𝑦 − 1)(𝑦𝑦 + 1) =

𝑦𝑦2 + 2𝑦𝑦 + 1 + (𝑦𝑦2 − 2𝑦𝑦 + 1)
(𝑦𝑦 − 6)(𝑦𝑦 − 1)(𝑦𝑦 + 1) = 

2𝑦𝑦2 + 2
(𝑦𝑦 − 6)(𝑦𝑦 − 1)(𝑦𝑦 + 1) =

2(𝑦𝑦2 + 1)
(𝑦𝑦 − 6)(𝑦𝑦 − 1)(𝑦𝑦 + 1) 

e. As in the previous examples, we first factor the denominators, including factoring out
a negative from any opposite expression. So,

2𝑥𝑥
𝑥𝑥2 − 4 +

5
2− 𝑥𝑥 −

1
2 + 𝑥𝑥 =

2𝑥𝑥
(𝑥𝑥 − 2)(𝑥𝑥 + 2) +

5
− (𝑥𝑥 − 2) −

1
𝑥𝑥 + 2 = 

2𝑥𝑥 − 5(𝑥𝑥 + 2) − 1(𝑥𝑥 − 2)
(𝑥𝑥 − 2)(𝑥𝑥 + 2) =

2𝑥𝑥 − 5𝑥𝑥 − 10− 𝑥𝑥 + 2
(𝑥𝑥 − 2)(𝑥𝑥 + 2) = 

−4𝑥𝑥 − 8
(𝑥𝑥 − 2)(𝑥𝑥 + 2) =

−4(𝑥𝑥 + 2)
(𝑥𝑥 − 2)(𝑥𝑥 + 2) =

−𝟒𝟒
𝒙𝒙 − 𝟐𝟐

f. Recall that a negative exponent really represents a hidden fraction. So, we may choose
to rewrite the powers with negative exponents as fractions, and then add them using
techniques as shown in previous examples.

(2𝑥𝑥 − 1)−2 + (2𝑥𝑥 − 1)−1 =
1

(2𝑥𝑥 − 1)2 +
1

2𝑥𝑥 − 1 =
1 + 1 ∙ (2𝑥𝑥 − 1)

(2𝑥𝑥 − 1)2 = 

1 + 2𝑥𝑥 − 1
(2𝑥𝑥 − 1)2 =

2𝑥𝑥
(2𝑥𝑥 − 1)2 =

𝟐𝟐𝟐𝟐
(𝟐𝟐𝟐𝟐 − 𝟏𝟏)𝟐𝟐 

Note: Since addition (or subtraction) of rational expressions results in a rational 
expression, from now on the term “rational expression” will include sums of 
rational expressions as well. 

 multiply by the 
missing bracket 

𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑥𝑥− 2)(𝑥𝑥+ 2) 

 nothing to simplify 
this time 
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Adding Rational Expressions in Application Problems 

Assume that a boat travels 𝑛𝑛 kilometers up the river and then returns back to the starting 
point. If the water in the river flows with a constant current of 𝑐𝑐 km/h, the total time for the 
round-trip can be calculated via the expression 𝑛𝑛

𝑟𝑟+𝑐𝑐
+ 𝑛𝑛

𝑟𝑟−𝑐𝑐
, where 𝑟𝑟 is the speed of the boat 

in still water in kilometers per hour. Write a single rational expression representing the total 
time of this trip. 
To find a single rational expression representing the total time, we perform the addition 
using (𝑟𝑟 + 𝑐𝑐)(𝑟𝑟 − 𝑐𝑐) as the lowest common denominator. So, 

𝑛𝑛
𝑟𝑟 + 𝑐𝑐

+
𝑛𝑛

𝑟𝑟 − 𝑐𝑐
=
𝑛𝑛(𝑟𝑟 − 𝑐𝑐) + 𝑛𝑛(𝑟𝑟 + 𝑐𝑐)

(𝑟𝑟 + 𝑐𝑐)(𝑟𝑟 − 𝑐𝑐) =
𝑛𝑛𝑟𝑟 − 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛

(𝑟𝑟 + 𝑐𝑐)(𝑟𝑟 − 𝑐𝑐) =
𝟐𝟐𝟐𝟐𝒓𝒓

𝒓𝒓𝟐𝟐 − 𝒄𝒄𝟐𝟐

Adding and Subtracting Rational Functions 

Given 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2+10𝑥𝑥+24

 and  𝑔𝑔(𝑥𝑥) = 2
𝑥𝑥2+4𝑥𝑥

, find 

a. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) b. (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥).

(𝒇𝒇 + 𝒈𝒈)(𝒙𝒙) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) =
1

𝑥𝑥2 + 10𝑥𝑥 + 24
+

2
𝑥𝑥2 + 4𝑥𝑥

=
1

(𝑥𝑥 + 6)(𝑥𝑥 + 4) +
2

𝑥𝑥(𝑥𝑥 + 4) =
1 ∙ 𝑥𝑥 + 2(𝑥𝑥 + 6)
𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4) =

𝑥𝑥 + 2𝑥𝑥 + 12
𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4)

=
3𝑥𝑥 + 12

𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4) =
3(𝑥𝑥 + 4)

𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4) =
𝟑𝟑

𝒙𝒙(𝒙𝒙+ 𝟔𝟔)

((𝒇𝒇 − 𝒈𝒈)(𝒙𝒙) = 𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥) =
1

𝑥𝑥2 + 10𝑥𝑥 + 24
−

2
𝑥𝑥2 + 4𝑥𝑥

=
1

(𝑥𝑥 + 6)(𝑥𝑥 + 4) −
2

𝑥𝑥(𝑥𝑥 + 4) =
1 ∙ 𝑥𝑥 − 2(𝑥𝑥 + 6)
𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4) =

𝑥𝑥 − 2𝑥𝑥 − 12
𝑥𝑥(𝑥𝑥 + 6)(𝑥𝑥 + 4)

=
−𝒙𝒙 − 𝟏𝟏𝟏𝟏

𝒙𝒙(𝒙𝒙 + 𝟔𝟔)(𝒙𝒙 + 𝟒𝟒)

Solution 

Solution a.     

b.       
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RT.3  Exercises 

1. a. What is the LCM for 6 and 9? b. What is the LCD for  1
6

 and  1
9
 ? 

2. a. What is the LCM for 𝑥𝑥2 − 25 and 𝑥𝑥 + 5? b. What is the LCD for 1
𝑥𝑥2−25

 and  1
𝑥𝑥+5

 ? 

Find the LCD and then perform the indicated operations. Simplify the resulting fraction. 

3. 5
12

+ 13
18

4. 11
30
− 19

75
5. 3

4
+ 7

30
− 1

16
6. 5

8
− 7

12
+ 11

40

Find the least common multiple (LCM) for each group of expressions. 

7. 24𝑎𝑎3𝑏𝑏4, 18𝑎𝑎5𝑏𝑏2 8. 6𝑥𝑥2𝑦𝑦2, 9𝑥𝑥3𝑦𝑦, 15𝑦𝑦3 9. 𝑥𝑥2 − 4, 𝑥𝑥2 + 2𝑥𝑥

10. 10𝑥𝑥2, 25(𝑥𝑥2 − 𝑥𝑥) 11. (𝑥𝑥 − 1)2, 1− 𝑥𝑥 12. 𝑦𝑦2 − 25, 5 − 𝑦𝑦

13. 𝑥𝑥2 − 𝑦𝑦2, 𝑥𝑥𝑥𝑥 + 𝑦𝑦2 14. 5𝑎𝑎 − 15, 𝑎𝑎2 − 6𝑎𝑎 + 9 15. 𝑥𝑥2 + 2𝑥𝑥 + 1, 𝑥𝑥2 − 4𝑥𝑥 − 1

16. 𝑛𝑛2 − 7𝑛𝑛 + 10, 𝑛𝑛2 − 8𝑛𝑛 + 15 17. 2𝑥𝑥2 − 5𝑥𝑥 − 3, 2𝑥𝑥2 − 𝑥𝑥 − 1, 𝑥𝑥2 − 6𝑥𝑥 + 9

18. 1− 2𝑥𝑥, 2𝑥𝑥 + 1, 4𝑥𝑥2 − 1 19. 𝑥𝑥5 − 4𝑥𝑥4 + 4𝑥𝑥3, 12 − 3𝑥𝑥2, 2𝑥𝑥 + 4

True or false? If true, explain why. If false, correct it. 

20. 1
2𝑥𝑥

+ 1
3𝑥𝑥

= 1
5𝑥𝑥

21. 1
𝑥𝑥−3

+ 1
3−𝑥𝑥

= 0 22. 1
𝑥𝑥

+ 1
𝑦𝑦

= 1
𝑥𝑥+𝑦𝑦

23. 3
4

+ 𝑥𝑥
5

= 3+𝑥𝑥
20

 

Perform the indicated operations and simplify if possible. 

24. 𝑥𝑥−2𝑦𝑦
𝑥𝑥+𝑦𝑦

+ 3𝑦𝑦
𝑥𝑥+𝑦𝑦

25. 𝑎𝑎+3
𝑎𝑎+1

− 𝑎𝑎−5
𝑎𝑎+1

26. 4𝑎𝑎+3
𝑎𝑎−3

− 1

27. 𝑛𝑛+1
𝑛𝑛−2

+ 2 28. 𝑥𝑥2

𝑥𝑥−𝑦𝑦
+ 𝑦𝑦2

𝑦𝑦−𝑥𝑥
29. 4𝑎𝑎−2

𝑎𝑎2−49
+ 5+3𝑎𝑎

49−𝑎𝑎2

30. 2𝑦𝑦−3
𝑦𝑦2−1

− 4−𝑦𝑦
1−𝑦𝑦2

31. 𝑎𝑎3

𝑎𝑎−𝑏𝑏
+ 𝑏𝑏3

𝑏𝑏−𝑎𝑎
32. 1

𝑥𝑥+ℎ
− 1

𝑥𝑥

33. 𝑥𝑥−2
𝑥𝑥+3

+ 𝑥𝑥+2
𝑥𝑥−4

34. 𝑥𝑥−1
3𝑥𝑥+1

+ 2
𝑥𝑥−3

35. 4𝑥𝑥𝑥𝑥
𝑥𝑥2−𝑦𝑦2

+ 𝑥𝑥−𝑦𝑦
𝑥𝑥+𝑦𝑦

36. 𝑥𝑥−1
3𝑥𝑥+15

− 𝑥𝑥+3
5𝑥𝑥+25

37. 𝑦𝑦−2
4𝑦𝑦+8

− 𝑦𝑦+6
5𝑦𝑦+10

38. 4𝑥𝑥
𝑥𝑥−1

− 2
𝑥𝑥+1

− 4
𝑥𝑥2−1

39. −2
𝑦𝑦+2

+ 5
𝑦𝑦−2

+ 𝑦𝑦+3
𝑦𝑦2−4

40. 𝑦𝑦
𝑦𝑦2−𝑦𝑦−20

+ 2
𝑦𝑦+4

41. 5𝑥𝑥
𝑥𝑥2−6𝑥𝑥+8

− 3𝑥𝑥
𝑥𝑥2−𝑥𝑥−12

42. 9𝑥𝑥+2
3𝑥𝑥2−2𝑥𝑥−8

+ 7
3𝑥𝑥2+𝑥𝑥−4

43. 3𝑦𝑦+2
2𝑦𝑦2−𝑦𝑦−10

+ 8
2𝑦𝑦2−7𝑦𝑦+5

44. 6
𝑦𝑦2+6𝑦𝑦+9

+ 5
𝑦𝑦2−9

45. 3𝑥𝑥−1
𝑥𝑥2+2𝑥𝑥−3

− 𝑥𝑥+4
𝑥𝑥2−9

46. 1
𝑥𝑥+1

− 𝑥𝑥
𝑥𝑥−2

+ 𝑥𝑥2+2
𝑥𝑥2−𝑥𝑥−2

47. 2
𝑦𝑦+3

− 𝑦𝑦
𝑦𝑦−1

+ 𝑦𝑦2+2
𝑦𝑦2+2𝑦𝑦−3
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48. 4𝑥𝑥
𝑥𝑥2−1

+ 3𝑥𝑥
1−𝑥𝑥

− 4
𝑥𝑥−1

49. 5𝑦𝑦
1−2𝑦𝑦

− 2𝑦𝑦
2𝑦𝑦+1

+ 3
4𝑦𝑦2−1

50. 𝑥𝑥+5
𝑥𝑥−3

− 𝑥𝑥+2
𝑥𝑥+1

− 6𝑥𝑥+10
𝑥𝑥2−2𝑥𝑥−3

Perform the indicated operations and simplify if possible. 

51. 2𝑥𝑥−3 + (3𝑥𝑥)−1 52. (𝑥𝑥2 − 9)−1 + 2(𝑥𝑥 − 3)−1 53. �𝑥𝑥+1
3
�
−1
− �𝑥𝑥−4

2
�
−1

54. �𝑎𝑎−3
𝑎𝑎2

− 𝑎𝑎−3
9
� ÷ 𝑎𝑎2−9

3𝑎𝑎
55. 𝑥𝑥2−4𝑥𝑥+4

2𝑥𝑥+1
∙ 2𝑥𝑥

2+𝑥𝑥
𝑥𝑥3−4𝑥𝑥

− 3𝑥𝑥−2
𝑥𝑥+1

56. 2
𝑥𝑥−3

− 𝑥𝑥
𝑥𝑥2−𝑥𝑥−6

∙ 𝑥𝑥
2−2𝑥𝑥−3
𝑥𝑥2−𝑥𝑥

Given 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), find (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) and (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥). Leave the answer in simplified single fraction form. 

57. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥+2

,   𝑔𝑔(𝑥𝑥) = 4
𝑥𝑥−3

58. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
𝑥𝑥2−4

,   𝑔𝑔(𝑥𝑥) = 1
𝑥𝑥2+4𝑥𝑥+4

59. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥
𝑥𝑥2+2𝑥𝑥−3

,   𝑔𝑔(𝑥𝑥) = 1
𝑥𝑥2−2𝑥𝑥+1

60. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 1
𝑥𝑥−1

,   𝑔𝑔(𝑥𝑥) = 1
𝑥𝑥+1

Solve each problem. 

61. There are two part-time waitresses at a restaurant. One waitress works every fourth day, and the other one
works every sixth day. Both waitresses were hired and start working on the same day. How often do they
both work on the same day?

62. A cylindrical water tank is being filled and drained at the same time. To find the rate of change
of the water level one could use the expression 𝐻𝐻

𝑇𝑇𝑖𝑖𝑖𝑖
− 𝐻𝐻

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
, where 𝐻𝐻 is the height of the water 

in the full tank while 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 represent the time needed to fill and empty the tank, 
respectively. Write the rate of change of the water level as a single algebraic fraction. 

63. To determine the Canadian population percent growth over the past year, one could use the expression
100 �𝑃𝑃1

𝑃𝑃0
− 1�, where 𝑃𝑃1 represents the current population and 𝑃𝑃0 represents the last year’s population. Write

this expression as a single algebraic fraction.

64. A boat travels 𝑘𝑘 kilometers against a 𝑐𝑐 km/h current. Assuming the current
remains constant, one could calculate the total time, in hours, needed for the
entire trip via the expression 𝑘𝑘

𝑠𝑠−𝑐𝑐
+ 𝑘𝑘

𝑠𝑠+𝑐𝑐
, where 𝑠𝑠 represents the speed of the

boat in calm water. Write this expression as a single algebraic fraction.



88   | Section RT4 

Rational Expressions and Functions 

RT4 Complex Fractions 

When working with algebraic expressions, sometimes we come across needing to simplify 
expressions like these: 

𝑥𝑥2 − 9
𝑥𝑥 + 1
𝑥𝑥 + 3
𝑥𝑥2 − 1

,       
1 + 1

𝑥𝑥
1 − 1

𝑦𝑦
,       

1
𝑥𝑥 + 2−

1
𝑥𝑥 + ℎ + 2
ℎ ,       

1
1
𝑎𝑎 −

1
𝑏𝑏

 

A complex fraction is a quotient of rational expressions (including sums of rational 
expressions) where at least one of these expressions contains a fraction itself. In this section, 
we will examine two methods of simplifying such fractions. 

Simplifying Complex Fractions 

Definition 4.1 A complex fraction is a quotient of rational expressions (including their sums) that result 

in a fraction with more than two levels. For example, 
1
2
3

 has three levels while  
1
2𝑥𝑥
3
4𝑥𝑥

 has four 

levels. Such fractions can be simplified to a single fraction with only two levels. For 
example,  

1
2
3 =

1
2 ∙

1
3 =

1
6 ,            𝑜𝑜𝑜𝑜           

1
2𝑥𝑥
3

4𝑥𝑥2
=

1
2𝑥𝑥 ∙

4𝑥𝑥2

3 =
2𝑥𝑥
3

There are two common methods of simplifying complex fractions. 

Method I (multiplying by the reciprocal of the denominator) 

Replace the main division in the complex fraction with a multiplication of the numerator 
fraction by the reciprocal of the denominator fraction. We then simplify the resulting 
fraction if possible. Both examples given in Definition 4.1 were simplified using this 
strategy.  

Method I is the most convenient to use when both the numerator and the denominator of a 
complex fraction consist of single fractions. However, if either the numerator or the 
denominator of a complex fraction contains addition or subtraction of fractions, it is usually 
easier to use the method shown below. 

Method II (multiplying by LCD) 

Multiply the numerator and denominator of a complex fraction by the least common 
denominator of all the fractions appearing in the numerator or in the denominator of the 
complex fraction. Then, simplify the resulting fraction if possible. For example, to simplify 
𝑦𝑦+1𝑥𝑥
𝑥𝑥+1𝑦𝑦

, multiply the numerator 𝑦𝑦 + 1
𝑥𝑥
 and the denominator 𝑥𝑥 + 1

𝑦𝑦
 by the 𝐿𝐿𝐿𝐿𝐿𝐿 �1

𝑥𝑥
, 1
𝑦𝑦
� = 𝑥𝑥𝑥𝑥. So, 

�𝑦𝑦 + 1
𝑥𝑥�

�𝑥𝑥 + 1
𝑦𝑦�

∙
𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥 =

𝑥𝑥𝑦𝑦2 + 𝑦𝑦
𝑥𝑥2𝑦𝑦 + 𝑥𝑥 =

𝑦𝑦(𝑥𝑥𝑥𝑥 + 1)
𝑥𝑥(𝑥𝑥𝑥𝑥 + 1) =

𝒚𝒚
𝒙𝒙

 

1 
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Simplifying Complex Fractions 

Use a method of your choice to simplify each complex fraction. 

a. 
𝑥𝑥2−2𝑥𝑥−8
𝑥𝑥2−2𝑥𝑥−15
𝑥𝑥2+8𝑥𝑥+12
𝑥𝑥2−4𝑥𝑥−21

b. 𝑎𝑎+𝑏𝑏
1
𝑎𝑎3

 + 1
𝑏𝑏3

 

c. 
𝑥𝑥 + 15
𝑥𝑥 − 13

 d. 
6

𝑥𝑥2−4
 − 5

𝑥𝑥+2
7

𝑥𝑥2−4
 − 4

𝑥𝑥−2

a. Since the expression
𝑥𝑥2−2𝑥𝑥−8
𝑥𝑥2−2𝑥𝑥−15
𝑥𝑥2+8𝑥𝑥+12
𝑥𝑥2−4𝑥𝑥−21

 contains a single fraction in both the numerator and 

denominator, we will simplify it using method I, as below. 

𝑥𝑥2 − 2𝑥𝑥 − 8
𝑥𝑥2 − 2𝑥𝑥 − 15
𝑥𝑥2 + 8𝑥𝑥 + 12
𝑥𝑥2 − 4𝑥𝑥 − 21

=
(𝑥𝑥 − 4)(𝑥𝑥 + 2)
(𝑥𝑥 − 5)(𝑥𝑥 + 3) ∙

(𝑥𝑥 − 7)(𝑥𝑥 + 3)
(𝑥𝑥 + 6)(𝑥𝑥 + 2) =

(𝒙𝒙 − 𝟒𝟒)(𝒙𝒙 − 𝟕𝟕)
(𝒙𝒙 − 𝟓𝟓)(𝒙𝒙+ 𝟔𝟔) 

b. 𝑎𝑎+𝑏𝑏
1
𝑎𝑎3

 + 1
𝑏𝑏3

 can be simplified in the following two ways:

Method I Method II 

𝑎𝑎+𝑏𝑏
1
𝑎𝑎3

 + 1
𝑏𝑏3

= 𝑎𝑎+𝑏𝑏
𝑏𝑏3+𝑎𝑎3

𝑎𝑎3𝑏𝑏3
= (𝑎𝑎+𝑏𝑏)𝑎𝑎3𝑏𝑏3

𝑎𝑎3+𝑏𝑏3 
𝑎𝑎+𝑏𝑏
1
𝑎𝑎3

 + 1
𝑏𝑏3
∙ 𝑎𝑎

3𝑏𝑏3

𝑎𝑎3𝑏𝑏3
= (𝑎𝑎+𝑏𝑏)𝑎𝑎3𝑏𝑏3

𝑏𝑏3+𝑎𝑎3

= (𝑎𝑎+𝑏𝑏)𝑎𝑎3𝑏𝑏3

(𝑎𝑎+𝑏𝑏)(𝑎𝑎2−𝑎𝑎𝑎𝑎+𝑏𝑏2) 
= 𝒂𝒂𝟑𝟑𝒃𝒃𝟑𝟑

𝒂𝒂𝟐𝟐−𝒂𝒂𝒂𝒂+𝒃𝒃𝟐𝟐 
= (𝑎𝑎+𝑏𝑏)𝑎𝑎3𝑏𝑏3

(𝑎𝑎+𝑏𝑏)(𝑎𝑎2−𝑎𝑎𝑎𝑎+𝑏𝑏2) 
= 𝒂𝒂𝟑𝟑𝒃𝒃𝟑𝟑

𝒂𝒂𝟐𝟐−𝒂𝒂𝒂𝒂+𝒃𝒃𝟐𝟐 

Caution: In Method II, the factor that we multiply the complex fraction by must be 
equal to 1. This means that the numerator and denominator of this factor 
must be exactly the same. 

c. To simplify 
𝑥𝑥 + 15
𝑥𝑥 − 13

, we will use method II. Multiplying the numerator and denominator 

by the 𝐿𝐿𝐿𝐿𝐿𝐿 �1
5

, 1
3
� = 15, we obtain  

𝑥𝑥 +  1
5

𝑥𝑥 −  1
3
∙

15
15 =

𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟑𝟑
𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟓𝟓

Solution 

 

factor and multiply 
by the reciprocal 
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d. Again, to simplify
6

𝑥𝑥2−4
 − 5

𝑥𝑥+2
7

𝑥𝑥2−4
 − 4

𝑥𝑥−2
, we will use method II. Notice that the lowest common 

multiple of the denominators in blue is (𝑥𝑥 + 2)(𝑥𝑥 − 2). So, after multiplying the 
numerator and denominator of the whole expression by the LCD, we obtain 

6
𝑥𝑥2 − 4  −  5

𝑥𝑥 + 2
7

𝑥𝑥2 − 4  −  4
𝑥𝑥 − 2

∙
(𝑥𝑥 + 2)(𝑥𝑥 − 2)
(𝑥𝑥 + 2)(𝑥𝑥 − 2) =

6 − 5(𝑥𝑥 − 2)
7 − 4(𝑥𝑥 + 2) =

6 − 5𝑥𝑥 + 10
7 − 4𝑥𝑥 − 8

=
−5𝑥𝑥 + 16
−4𝑥𝑥 − 1

=
𝟓𝟓𝟓𝟓 − 𝟏𝟏𝟏𝟏
𝟒𝟒𝟒𝟒 + 𝟏𝟏

Simplifying Rational Expressions with Negative Exponents 

Simplify each expression. Leave the answer with only positive exponents. 

a. 𝑥𝑥−2 − 𝑦𝑦−1

𝑦𝑦 −𝑥𝑥
b. 𝑎𝑎−3

𝑎𝑎−1−𝑏𝑏−1

a. If we write the expression with no negative exponents, it becomes a complex fraction,
which can be simplified as in Example 1. So,

𝑥𝑥−2  −  𝑦𝑦−1

𝑦𝑦 − 𝑥𝑥 =

1
𝑥𝑥 − 1

𝑦𝑦
𝑦𝑦 − 𝑥𝑥 ∙

𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥 =

𝑦𝑦 − 𝑥𝑥
𝑥𝑥𝑥𝑥(𝑦𝑦 − 𝑥𝑥) =

𝟏𝟏
𝒙𝒙𝒙𝒙

b. As above, first, we rewrite the expression with only positive exponents and then
simplify as any other complex fraction. 

𝑎𝑎−3

𝑎𝑎−1 − 𝑏𝑏−1 =
1
𝑎𝑎3

1
𝑎𝑎 −

1
𝑏𝑏
∙
𝑎𝑎3𝑏𝑏
𝑎𝑎3𝑏𝑏 =

𝑏𝑏
𝑎𝑎2𝑏𝑏 − 𝑎𝑎3 =

𝒃𝒃
𝒂𝒂𝟐𝟐(𝒃𝒃 − 𝒂𝒂) 

Simplifying the Difference Quotient for a Rational Function 

Find and simplify the expression  𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

  for the function  𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥+1

. 

Since 𝑓𝑓(𝑎𝑎 + ℎ) = 1
𝑎𝑎+ℎ+1

 and 𝑓𝑓(𝑎𝑎) = 1
𝑎𝑎+1

, then 

𝑓𝑓(𝑎𝑎 + ℎ)− 𝑓𝑓(𝑎𝑎)
ℎ

=
1

𝑎𝑎 + ℎ + 1 −
1

𝑎𝑎 + 1
ℎ

 

Solution 

 

Solution 

 Remember! This factor 
must be = 1 
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To simplify this expression, we can multiply the numerator and denominator by the lowest 
common denominator, which is (𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1). Thus, 

1
𝑎𝑎 + ℎ + 1−

1
𝑎𝑎 + 1

ℎ
∙

(𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1)
(𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1) =

𝑎𝑎 + 1− (𝑎𝑎 + ℎ + 1)
ℎ(𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1)

=
𝑎𝑎 + 1 − 𝑎𝑎 − ℎ − 1
ℎ(𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1) =

−ℎ
ℎ(𝑎𝑎 + ℎ + 1)(𝑎𝑎 + 1) =

−𝟏𝟏
(𝒂𝒂 + 𝒉𝒉 + 𝟏𝟏)(𝒂𝒂 + 𝟏𝟏)

RT.4  Exercises 

Simplify each complex fraction. 

1. 
2 − 13
3 + 73

 2. 
5 − 34
4 + 12

 3. 
3
8 − 5
2
3 + 6

4. 
2
3 + 45
3
4 − 12

Simplify each complex rational expression. 

5. 
𝑥𝑥3
𝑦𝑦
𝑥𝑥2
𝑦𝑦3

6. 
𝑛𝑛 − 5
6𝑛𝑛
𝑛𝑛 − 5
8𝑛𝑛2

7. 
1 − 1𝑎𝑎
4 + 1𝑎𝑎

 8. 
2
𝑛𝑛 + 3
5
𝑛𝑛 − 6

9. 
9 − 3𝑥𝑥
4𝑥𝑥 + 12
𝑥𝑥 − 3
6𝑥𝑥 − 24

10. 
9
𝑦𝑦

15
𝑦𝑦  − 6

11. 
4
𝑥𝑥 − 2𝑦𝑦
4
𝑥𝑥 + 2𝑦𝑦

12. 
3
𝑎𝑎 + 4𝑏𝑏
4
𝑎𝑎 − 3𝑏𝑏

13. 
𝑎𝑎 − 3𝑎𝑎𝑏𝑏
𝑏𝑏 − 𝑏𝑏𝑎𝑎

14. 
1
𝑥𝑥 − 1𝑦𝑦
𝑥𝑥2−𝑦𝑦2
𝑥𝑥𝑥𝑥

15. 
4
𝑦𝑦 − 𝑦𝑦

𝑥𝑥2
1
𝑥𝑥 − 2𝑦𝑦

16. 
5
𝑝𝑝 − 1𝑞𝑞
1

5𝑞𝑞2
 − 5

𝑝𝑝2
 

17. 
𝑛𝑛−12
𝑛𝑛  +𝑛𝑛

𝑛𝑛 + 4 
18.  2𝑡𝑡−1

3𝑡𝑡−2
𝑡𝑡  + 2𝑡𝑡

19. 
1

𝑎𝑎−ℎ − 1𝑎𝑎
ℎ 

20. 
1

(𝑥𝑥+ℎ)2 − 1
𝑥𝑥2

ℎ 

21. 
4 + 12

2𝑥𝑥−3

5 + 15
2𝑥𝑥−3

22. 
1 + 3

𝑥𝑥+2
1 + 6

𝑥𝑥−1
23. 

1
𝑏𝑏2

 − 1
𝑎𝑎2

1
𝑏𝑏 − 1𝑎𝑎

24. 
1
𝑥𝑥2

 − 1
𝑦𝑦2

1
𝑥𝑥 + 1𝑦𝑦

25. 
𝑥𝑥+3
𝑥𝑥  − 4

𝑥𝑥−1
𝑥𝑥

𝑥𝑥−1 + 1𝑥𝑥
26. 

3
𝑥𝑥2+6𝑥𝑥+9

 + 3
𝑥𝑥+3

6
𝑥𝑥2−9

 + 6
3−𝑥𝑥

27.  
1
𝑎𝑎2

 − 1
𝑏𝑏2

1
𝑎𝑎3

 + 1
𝑏𝑏3

 
28. 

4𝑝𝑝2−12𝑝𝑝+9
2𝑝𝑝2+7𝑝𝑝−15
2𝑝𝑝2−15𝑝𝑝+18
𝑝𝑝2−𝑝𝑝−30

29. Are the expressions  𝑥𝑥
−2+𝑦𝑦−2

𝑥𝑥−1+𝑦𝑦−1
 and  𝑥𝑥+𝑦𝑦

𝑥𝑥2+𝑦𝑦2
 equivalent? Explain why or why not. 

 This bracket 
is essential! 

 keep the denominator 
in a factored form 
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Simplify each expression. Leave the answer with only positive exponents. 

30. 1
𝑎𝑎−2 − 𝑏𝑏−2

31. 𝑥𝑥−1 + 𝑥𝑥−2

3𝑥𝑥−1
32. 𝑥𝑥−2

𝑦𝑦−3 − 𝑥𝑥−3
33. 1 − (2𝑛𝑛+1)−1

1 + (2𝑛𝑛+1)−1

Find and simplify the difference quotient  𝑓𝑓
(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)

ℎ
 for the given function. 

34. 𝑓𝑓(𝑥𝑥) = 5
𝑥𝑥

35. 𝑓𝑓(𝑥𝑥) = 2
𝑥𝑥2

36. 𝑓𝑓(𝑥𝑥) = 1
1−𝑥𝑥

37. 𝑓𝑓(𝑥𝑥) = − 1
𝑥𝑥−2

Simplify each continued fraction. 

38. 𝑎𝑎 − 𝑎𝑎
1 − 𝑎𝑎

1 − 𝑎𝑎
39. 3 − 2

1 − 2

3 − 2𝑥𝑥

40. 𝑎𝑎 + 𝑎𝑎
2+ 1

1 − 2𝑎𝑎
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RT5 Rational Equations and Graphs 

In previous sections of this chapter, we worked with rational expressions. If two rational 
expressions are equated, a rational equation arises. Such equations often appear when 
solving application problems that involve rates of work or amounts of time considered in 
motion problems.  In this section, we will discuss how to solve rational equations, with 
close attention to their domains. We will also take a look at the graphs of reciprocal 
functions, their properties and transformations.  

Rational Equations 

Definition 5.1 A rational equation is an equation involving only rational expressions and containing at 
least one fractional expression. 

Here are some examples of rational equations: 

𝑥𝑥
2
−

12
𝑥𝑥

= −1, 
𝑥𝑥2

𝑥𝑥 − 5
=

25
𝑥𝑥 − 5

, 
2𝑥𝑥
𝑥𝑥 − 3

−
6
𝑥𝑥

=
18

𝑥𝑥2 − 3𝑥𝑥

Attention! A rational equation contains an equals sign, while a rational expression does 
not. An equation can be solved for a given variable, while an expression can 
only be simplified or evaluated. For example, 𝒙𝒙

𝟐𝟐
− 𝟏𝟏𝟏𝟏

𝒙𝒙
 is an expression to 

simplify, while 𝒙𝒙
𝟐𝟐

= 𝟏𝟏𝟏𝟏
𝒙𝒙

 is an equation to solve. 
When working with algebraic structures, it is essential to identify whether they 
are equations or expressions before applying appropriate strategies. 

By Definition 5.1, rational equations contain one or more denominators. Since division by 
zero is not allowed, we need to pay special attention to the variable values that would make 
any of these denominators equal to zero. Such values would have to be excluded from the 
set of possible solutions. For example, neither 0 nor 3 can be solutions to the equation 

2𝑥𝑥
𝑥𝑥 − 3

−
6
𝑥𝑥

=
18

𝑥𝑥2 − 3𝑥𝑥
, 

as it is impossible to evaluate either of its sides for 𝑥𝑥 = 0 or 3. So, when solving a rational 
equation, it is important to find its domain first. 

Definition 5.2 The domain of the variable(s) of a rational equation (in short, the domain of a rational 
equation) is the intersection of the domains of all rational expressions within the 
equation. 

As stated in Definition 2.1, the domain of each single algebraic fraction is the set of all real 
numbers except for the zeros of the denominator (the variable values that would make the 
denominator equal to zero). Therefore, the domain of a rational equation is the set of all 
real numbers except for the zeros of all the denominators appearing in this equation. 
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Determining Domains of Rational Equations 

Find the domain of the variable in each of the given equations. 

a. 𝑥𝑥
2
− 12

𝑥𝑥
= −1 b. 2𝑥𝑥

𝑥𝑥−2
= −3

𝑥𝑥
+ 4

𝑥𝑥−2

c. 2
𝑦𝑦2−2𝑦𝑦−8

− 4
𝑦𝑦2+6𝑦𝑦+8

= 2
𝑦𝑦2−16

a. The equation  𝑥𝑥
2
− 12

𝑥𝑥
= −1 contains two denominators, 2 and 𝑥𝑥. 2 is never equal to 

zero and 𝑥𝑥 becomes zero when 𝑥𝑥 = 0. Thus, the domain of this equation is ℝ ∖ {𝟎𝟎}. 

b. The equation 2𝑥𝑥
𝑥𝑥−2

= −3
𝑥𝑥

+ 4
𝑥𝑥−2

 contains two types of denominators, 𝑥𝑥 − 2 and 𝑥𝑥. The
𝑥𝑥 − 2 becomes zero when 𝑥𝑥 = 2, and 𝑥𝑥 becomes zero when 𝑥𝑥 = 0. Thus, the domain 
of this equation is ℝ ∖ {𝟎𝟎,𝟐𝟐}. 

c. The equation  2
𝑦𝑦2−2𝑦𝑦−8

− 4
𝑦𝑦2+6𝑦𝑦+8

= 2
𝑦𝑦2−16

  contains three different denominators.

To find the zeros of these denominators, we solve the following equations by factoring:

     𝑦𝑦2 − 2𝑦𝑦 − 8 = 0      𝑦𝑦2 + 6𝑦𝑦 + 8 = 0          𝑦𝑦2 − 16 = 0 

(𝑦𝑦 − 4)(𝑦𝑦 + 2) = 0 (𝑦𝑦 + 4)(𝑦𝑦 + 2) = 0 (𝑦𝑦 − 4)(𝑦𝑦 + 4) = 0 

𝑦𝑦 = 4  or  𝑦𝑦 = −2 𝑦𝑦 = −4  or  𝑦𝑦 = −2 𝑦𝑦 = 4  or  𝑦𝑦 = −4 

So, −4, −2, and 4 must be excluded from the domain of this equation. Therefore, the 
domain 𝐷𝐷 = ℝ ∖ {−𝟒𝟒,−𝟐𝟐,𝟒𝟒}. 

To solve a rational equation, it is convenient to clear all the fractions first and then solve 
the resulting polynomial equation. This can be achieved by multiplying all the terms of the 
equation by the least common denominator.  

Caution!  Only equations, not expressions, can be changed equivalently by multiplying 
both of their sides by the LCD. 
Multiplying expressions by any number other than 1 creates expressions that 
are NOT equivalent to the original ones. So, avoid multiplying rational 
expressions by the LCD. 

Solving Rational Equations 

Solve each equation. 

a. 𝑥𝑥
2
− 12

𝑥𝑥
= −1 b. 2𝑥𝑥

𝑥𝑥−2
= −3

𝑥𝑥
+ 4

𝑥𝑥−2

c. 2
𝑦𝑦2−2𝑦𝑦−8

− 4
𝑦𝑦2+6𝑦𝑦+8

= 2
𝑦𝑦2−16

d. 𝑥𝑥−1
𝑥𝑥−3

= 2
𝑥𝑥−3

Solution 
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a. The domain of the equation 𝑥𝑥
2
− 12

𝑥𝑥
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= −1 is the set ℝ ∖ {0}, as discussed in Example 
1a. The 𝐿𝐿𝐿𝐿𝐿𝐿(2, 𝑥𝑥) = 2𝑥𝑥, so we calculate 

𝑥𝑥
2
−

12
𝑥𝑥

= −1 

2𝑥𝑥 ∙
𝑥𝑥
2
− 2𝑥𝑥 ∙

12
𝑥𝑥

= −1 ∙ 2𝑥𝑥 

𝑥𝑥2 − 24 = −2𝑥𝑥 

𝑥𝑥2 + 2𝑥𝑥 − 24 = 0 

(𝑥𝑥 + 6)(𝑥𝑥 − 4) = 0 

𝑥𝑥 = −6  or  𝑥𝑥 = 4 

Since both of these numbers belong to the domain, the solution set of the original 
equation is {−𝟔𝟔,𝟒𝟒}.  

b. The domain of the equation 2𝑥𝑥
𝑥𝑥−2

= −3
𝑥𝑥

+ 4
𝑥𝑥−2

 is the set ℝ ∖ {0, 2}, as discussed in 
Example 1b. The 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥 − 2,𝑥𝑥) = 𝑥𝑥(𝑥𝑥 − 2), so we calculate 

2𝑥𝑥
𝑥𝑥 − 2

=
−3
𝑥𝑥

+
4

𝑥𝑥 − 2

𝑥𝑥(𝑥𝑥 − 2) ∙
2𝑥𝑥
𝑥𝑥 − 2

=
−3
𝑥𝑥
∙ 𝑥𝑥(𝑥𝑥 − 2) +

4
𝑥𝑥 − 2

∙ 𝑥𝑥(𝑥𝑥 − 2)

2𝑥𝑥2 = −3(𝑥𝑥 − 2) + 4𝑥𝑥 

2𝑥𝑥2 = −3𝑥𝑥 + 6 + 4𝑥𝑥 

2𝑥𝑥2 − 𝑥𝑥 − 6 = 0 

(2𝑥𝑥 + 3)(𝑥𝑥 − 2) = 0 

𝑥𝑥 = −3
2
  or  𝑥𝑥 = 2 

Since 2 is excluded from the domain, there is only one solution to the original equation, 
𝑥𝑥 = −𝟑𝟑

𝟐𝟐
.  

c. The domain of the equation 2
𝑦𝑦2−2𝑦𝑦−8

− 4
𝑦𝑦2+6𝑦𝑦+8

= 2
𝑦𝑦2−16

 is the set ℝ ∖ {−4,−2, 4},
as discussed in Example 1c. To find the LCD, it is useful to factor the denominators
first. Since
𝑦𝑦2 − 2𝑦𝑦 − 8 = (𝑦𝑦 − 4)(𝑦𝑦 + 2),
𝑦𝑦2 + 6𝑦𝑦 + 8 = (𝑦𝑦 + 4)(𝑦𝑦 + 2), and
𝑦𝑦2 − 16 = (𝑦𝑦 − 4)(𝑦𝑦 + 4), then the LCD needed to clear the fractions in the original
equation is (𝑦𝑦 − 4)(𝑦𝑦 + 4)(𝑦𝑦 + 2). So, we calculate

2
(𝑦𝑦 − 4)(𝑦𝑦 + 2) −

4
(𝑦𝑦 + 4)(𝑦𝑦 + 2) =

2
(𝑦𝑦 − 4)(𝑦𝑦 + 4)

Solution 

multiply each term by 
the LCD 

 
expand the bracket,  

collect like terms, and 
 bring the terms over to one side 

factor to find the 
possible roots 

factor to find the possible roots 
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2
(𝑦𝑦 − 4)(𝑦𝑦 + 2)  −  

4
(𝑦𝑦 + 4)(𝑦𝑦 + 2) =

2
(𝑦𝑦 − 4)(𝑦𝑦 + 4)

2(𝑦𝑦 + 4) − 4(𝑦𝑦 − 4) = 2(𝑦𝑦 + 2) 

2𝑦𝑦 + 8− 4𝑦𝑦 + 16 = 2𝑦𝑦 + 4 

20 = 4𝑦𝑦 

𝑦𝑦 = 5 

Since 5 is in the domain, this is the true solution. 

d. First, we notice that the domain of the equation  𝑥𝑥−1
𝑥𝑥−3

= 2
𝑥𝑥−3

 is the set ℝ ∖ {3}. To solve
this equation, we can multiply it by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑥𝑥 − 3, as in the previous examples, or
we can apply the method of cross-multiplication, as the equation is a proportion. Here,
we show both methods.

Multiplication by LCD: Cross-multiplication: 

𝑥𝑥−1
𝑥𝑥−3 = 2

𝑥𝑥−3
𝑥𝑥−1
𝑥𝑥−3 = 2

𝑥𝑥−3

𝑥𝑥 − 1 = 2 (𝑥𝑥 − 1)(𝑥𝑥 − 3) = 2(𝑥𝑥 − 3) 

 𝑥𝑥 = 3  𝑥𝑥 − 1 = 2 

 𝑥𝑥 = 3 

Since 3 is excluded from the domain, there is no solution to the original equation. 

Summary of Solving Rational Equations in One Variable 

 Determine the domain of the variable.

 Clear all the fractions by multiplying both sides of the equation by the LCD of these
fractions.

 Find possible solutions by solving the resulting equation.

 Check the possible solutions against the domain. The solution set consists of only
these possible solutions that belong to the domain.

Graphs of Basic Rational Functions 

So far, we discussed operations on rational expressions and solving rational equations. 
Now, we will look at rational functions, such as 

𝑓𝑓(𝑥𝑥) =
1
𝑥𝑥

,  𝑔𝑔(𝑥𝑥) =
−2
𝑥𝑥 + 3

,       𝑜𝑜𝑜𝑜      ℎ(𝑥𝑥) =
𝑥𝑥 − 3
𝑥𝑥 − 2

. 

(𝑦𝑦 − 4)(𝑦𝑦 + 4)(𝑦𝑦 + 2) ∙ ⋅ (𝑦𝑦 − 4)(𝑦𝑦 + 4)(𝑦𝑦 + 2) (𝑦𝑦 − 4)(𝑦𝑦 + 4)(𝑦𝑦 + 2) ∙ 

multiply both sides 
by 𝑥𝑥 − 3 

divide both sides 
by (𝑥𝑥 − 3)

 
this division is 
permitted as 
𝑥𝑥 − 3 ≠ 0 

 
this multiplication 

is permitted as  
𝑥𝑥 − 3 ≠ 0 

Use the method 
of your choice 
– either one is

fine. 
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Definition 5.3 A rational function is any function that can be written in the form 

𝒇𝒇(𝒙𝒙) =
𝑷𝑷(𝒙𝒙)
𝑸𝑸(𝒙𝒙)

, 

where 𝑃𝑃 and 𝑄𝑄 are polynomials and 𝑄𝑄 is not a zero polynomial. 

The domain 𝑫𝑫𝒇𝒇 of such function 𝑓𝑓 includes all 𝑥𝑥-values for which 𝑄𝑄(𝑥𝑥) ≠ 0. 

Finding the Domain of a Rational Function 

Find the domain of each function.  

a. 𝑔𝑔(𝑥𝑥) = −2
𝑥𝑥+3

b. ℎ(𝑥𝑥) = 𝑥𝑥−3
𝑥𝑥−2

a. Since 𝑥𝑥 + 3 = 0 for 𝑥𝑥 = −3, the domain of 𝑔𝑔 is the set of all real numbers except for
−3. So, the domain 𝑫𝑫𝒈𝒈 = ℝ ∖ {−𝟑𝟑}.

b. Since 𝑥𝑥 − 2 = 0 for 𝑥𝑥 = 2, the domain of ℎ is the set of all real numbers except for 2.
So, the domain 𝑫𝑫𝒉𝒉 = ℝ ∖ {𝟐𝟐}.

Note: The subindex 𝑓𝑓 in the notation 𝐷𝐷𝑓𝑓 indicates that the domain is of function 𝑓𝑓. 

To graph a rational function, we usually start by making a table of values. Because the 
graphs of rational functions are typically nonlinear, it is a good idea to plot at least 3 points 
on each side of each 𝑥𝑥-value where the function is undefined. For example, to graph the 

basic rational function, 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥
, called the reciprocal function, we 

evaluate 𝑓𝑓 for a few points to the right of zero and to the left of zero. 
This is because 𝑓𝑓 is undefined at 𝑥𝑥 = 0, which means that the graph 
of 𝑓𝑓 does not cross the 𝑦𝑦-axis. After 
plotting the obtained points, we connect   
them within each group, to the right of zero 
and to the left of zero, creating two disjoint 
curves. To see the shape of each curve 
clearly, we might need to evaluate 𝑓𝑓 at 
some additional points.  

The domain of the reciprocal function 
 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥
  is ℝ ∖ {𝟎𝟎}, as the denominator 𝑥𝑥 must be different than zero. Projecting the graph 

of this function onto the 𝑦𝑦-axis helps us determine the range, which is also ℝ ∖ {𝟎𝟎}. 

Solution 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 
𝟏𝟏
𝟐𝟐 2 
𝟏𝟏 1 
𝟐𝟐 1

2
𝟎𝟎 undefined 

− 
𝟏𝟏
𝟐𝟐 −2

−𝟏𝟏 −1
−𝟐𝟐 −1

2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

1 

1 
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There is another interesting feature of the graph of the reciprocal function 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥
. 

Observe that the graph approaches two lines, 𝑦𝑦 = 0, the 𝑥𝑥-axis, and 𝑥𝑥 = 0, the 𝑦𝑦-axis. 
These lines are called asymptotes. They effect the shape of the graph, but they themselves 
do not belong to the graph. To indicate the fact that asymptotes do not belong to the graph, 
we use a dashed line when graphing them.  

In general, if the 𝑦𝑦-values of a rational function approach ∞ or −∞ as the 𝑥𝑥-values approach 
a real number 𝑎𝑎, the vertical line 𝑥𝑥 = 𝑎𝑎 is a vertical asymptote of the graph. This can be 
recorded with the use of arrows, as follows: 

𝑥𝑥 = 𝑎𝑎 is a vertical asymptote ⇔ 𝑦𝑦 → ∞ (or −∞) when 𝑥𝑥 → 𝑎𝑎. 

Also, if the 𝑦𝑦-values approach a real number 𝑏𝑏 as 𝑥𝑥-values approach ∞ or −∞, the 
horizontal line 𝑦𝑦 = 𝑏𝑏 is a horizontal asymptote of the graph. Again, using arrows, we can 
record this statement as: 

𝑦𝑦 = 𝑎𝑎 is a horizontal asymptote ⇔ 𝑦𝑦 → 𝑏𝑏 when 𝑥𝑥 → ∞ (or −∞). 

Graphing and Analysing the Graphs of Basic Rational Functions 

For each function, state its domain and the equation of the vertical asymptote, graph it, and 
then state its range and the equation of the horizontal asymptote. 

a. 𝑔𝑔(𝑥𝑥) = −2
𝑥𝑥+3

b. ℎ(𝑥𝑥) = 𝑥𝑥−3
𝑥𝑥−2

a. The domain of function 𝑔𝑔(𝑥𝑥) = −2
𝑥𝑥+3

is 𝑫𝑫𝒈𝒈 = ℝ ∖ {−𝟑𝟑}, as discussed in Example 3a.
Since −3 is excluded from the domain, we expect the vertical asymptote to be at 𝒙𝒙 =
−𝟑𝟑.

To graph function 𝑔𝑔, we evaluate it at 
some points to the right and to the left 
of  −3. The reader is encouraged to 
check the values given in the table. 
Then, we draw the vertical asymptote 
𝑥𝑥 = −3 and plot and join the obtained 
points on each side of this asymptote. 
The graph suggests that the horizontal 
asymptote is the 𝑥𝑥-axis. Indeed, the value of zero cannot be 
attained by the function 𝑔𝑔(𝑥𝑥) = −2

𝑥𝑥+3
, as  in order for a fraction to 

become zero, its numerator would have to be zero. So, the range 
of function 𝑔𝑔 is ℝ ∖ {𝟎𝟎} and 𝒚𝒚 = 𝟎𝟎 is the equation of the 
horizontal asymptote. 

b. The domain of function ℎ(𝑥𝑥) = 𝑥𝑥−3
𝑥𝑥−2

 is 𝑫𝑫𝒉𝒉 = ℝ ∖ {𝟐𝟐}, as discussed in Example 3b. 
Since 2 is excluded from the domain, we expect the vertical asymptote to be at 𝒙𝒙 = 𝟐𝟐. 

𝒙𝒙 𝒈𝒈(𝒙𝒙) 

−𝟓𝟓
𝟐𝟐

−4
−𝟐𝟐 −2
−𝟏𝟏 −1
𝟏𝟏 − 1

2
−𝟑𝟑 undefined 

−𝟕𝟕
𝟐𝟐

4 
−𝟒𝟒 2 
−𝟓𝟓 1 
−𝟔𝟔 2

3

Solution 

 read: approaches 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

𝑏𝑏 

Horizontal Asymptote 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 𝑎𝑎 

V
ertical A

sym
ptote 

𝑔𝑔(𝑥𝑥)

𝑥𝑥
1 

−3 
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As before, to graph function ℎ, we 
evaluate it at some points to the right 
and to the left of  2. Then, we draw the 
vertical asymptote 𝑥𝑥 = 2 and plot and 
join the obtained points on each side 
of this asymptote. The graph suggests 
that the horizontal asymptote is the 
line 𝒚𝒚 = 𝟏𝟏. Thus, the range of 
function ℎ is ℝ ∖ {𝟏𝟏}. 

Notice that 𝑥𝑥−3
𝑥𝑥−2

= 𝑥𝑥−2−1
𝑥𝑥−2

= 𝑥𝑥−2
𝑥𝑥−2

− 1
𝑥𝑥−2

= 1 − 1
𝑥𝑥−2

. Since 1
𝑥𝑥−2

is never equal to zero, 1 − 1
𝑥𝑥−2

 is never equal to 1. This 
confirms the range and the horizontal asymptote stated above. 

Connecting the Algebraic and Graphical Solutions of Rational Equations 

Given that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+2
𝑥𝑥−1

, find all the 𝑥𝑥-values for which 𝑓𝑓(𝑥𝑥) = 2. Illustrate the situation 
with a graph. 

To find all the 𝑥𝑥-values for which 𝑓𝑓(𝑥𝑥) = 2, we replace 𝑓𝑓(𝑥𝑥) in the equation 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+2
𝑥𝑥−1

 
with 2 and solve the resulting equation. So, we have 

2 =
𝑥𝑥 + 2
𝑥𝑥 − 1

2𝑥𝑥 − 2 = 𝑥𝑥 + 2 

𝑥𝑥 = 4 

Thus, 𝑓𝑓(𝑥𝑥) = 2 for 𝒙𝒙 = 𝟒𝟒. 

The geometrical connection can be observed by graphing the 
function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+2

𝑥𝑥−1
= 𝑥𝑥−1+3

𝑥𝑥−1
= 1 + 3

𝑥𝑥−1
 and the line 𝑦𝑦 = 2 

on the same grid, as illustrated by the accompanying graph. 
The 𝑥𝑥-coordinate of the intersection of the two graphs is the 
solution to the equation 2 = 𝑥𝑥+2

𝑥𝑥−1
. This also means that 

𝑓𝑓(4) = 4+2
4−1

= 2. So, we can say that 𝑓𝑓(4) = 2. 

Graphing the Reciprocal of a Linear Function 

Suppose 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 − 3. 
a. Determine the reciprocal function 𝑔𝑔(𝑥𝑥) = 1

𝑓𝑓(𝑥𝑥)
 and its domain 𝐷𝐷𝑔𝑔. 

𝒙𝒙 𝒉𝒉(𝒙𝒙) 

−𝟏𝟏 4
3

𝟎𝟎 3
2

𝟏𝟏 2 
𝟑𝟑
𝟐𝟐 3 

𝟐𝟐 undefined 
𝟓𝟓
𝟐𝟐

−1
𝟑𝟑 0 
𝟒𝟒 1

2

𝟔𝟔 3
4

ℎ(𝑥𝑥) 

𝑥𝑥 

1 

2 

Solution 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 1 𝟒𝟒 

2 
𝑦𝑦 = 2 

𝑓𝑓(𝑥𝑥) =
𝑥𝑥 + 2
𝑥𝑥 − 1
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b. Determine the equation of the vertical asymptote of the reciprocal function 𝑔𝑔.

c. Graph the function 𝑓𝑓 and its reciprocal function 𝑔𝑔 on the same grid. Then, describe the
relations between the two graphs.

a. The reciprocal of 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 − 3 is the function 𝒈𝒈(𝒙𝒙) = 𝟏𝟏
𝟐𝟐𝟐𝟐−𝟑𝟑

. Since 2𝑥𝑥 − 3 = 0 for 

𝑥𝑥 = 3
2
, then the domain 𝑫𝑫𝒈𝒈 = ℝ ∖ �𝟑𝟑

𝟐𝟐
�. 

b. A vertical asymptote of a rational function in simplified form is a vertical line passing
through any of the 𝑥𝑥-values that are excluded from the domain of such a function. So,
the equation of the vertical asymptote of function 𝑔𝑔(𝑥𝑥) = 1

2𝑥𝑥−3
 is 𝒙𝒙 = 𝟑𝟑

𝟐𝟐
. 

c. To graph functions 𝑓𝑓 and 𝑔𝑔, we can use a table of values as below.

Notice that the vertical asymptote of the reciprocal function comes through the zero of 
the linear function. Also, the values of both functions are positive to the right of 3

2
 and 

negative to the left of 3
2
. In addition, 𝑓𝑓(2) = 𝑔𝑔(2) = 1  and  𝑓𝑓(1) = 𝑔𝑔(1) = −1. This 

is because the reciprocal of 1 is 1 and the reciprocal of −1 is −1. For the rest of the 
values, observe that the values of the linear function that are very close to zero become 
very large in the reciprocal function and conversely, the values of the linear function 
that are very far from zero become very close to zero in the reciprocal function. This 
suggests the horizontal asymptote at zero. 

Using Properties of a Rational Function in an Application Problem 

Elevating the outer rail of a track allows for a safer turn of a train on a circular curve. The 
elevation depends on the allowable speed of the train and the radius of the curve. Suppose 
that a circular curve with a radius of 𝑟𝑟 meters is being designed for a train travelling 100 
kilometers per hour. Assume that the function 𝑓𝑓(𝑟𝑟) = 3000

𝑟𝑟
 can be used to calculate the 

proper elevation 𝑦𝑦 = 𝑓𝑓(𝑟𝑟), in centimeters, for the outer rail. 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 𝒈𝒈(𝒙𝒙) 

−𝟏𝟏
𝟐𝟐 −4 −1

4
𝟏𝟏
𝟐𝟐

−2 −1
2

𝟏𝟏 −1 −1
𝟓𝟓
𝟒𝟒

−
1
2 −2

𝟑𝟑
𝟐𝟐 0 undefined

𝟕𝟕
𝟒𝟒

1
2 2 

𝟐𝟐 1 1 
𝟓𝟓
𝟐𝟐 2 1

2
𝟕𝟕
𝟐𝟐
 4 1

4

Solution 

𝑔𝑔(𝑥𝑥) = 1
2𝑥𝑥−3

𝑥𝑥 

1 

2 

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 − 3 

elevation 
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a. Evaluate 𝑓𝑓(300) and interpret the result.

b. Suppose that the outer rail for a curve is elevated 12
centimeters. Find the radius of this curve.

c. Observe the accompanying graph of the function 𝑓𝑓 and
discuss how the elevation of the outer rail changes as the
radius 𝑟𝑟 increases.

a. 𝑓𝑓(300) = 3000
300

= 10. Thus, the outer rail on a curve with a 300-meter radius should 
be elevated 10 centimeters for a train to travel through it at 100 km/hr safely. 

b. Since the elevation 𝑦𝑦 = 𝑓𝑓(𝑟𝑟) = 12 centimeters, to find the corresponding value of 𝑟𝑟,
we need to solve the equation

12 = 3000
𝑟𝑟

. 

After multiplying this equation by 𝑟𝑟 and dividing it by 12, we obtain 

𝑟𝑟 = 3000
12

= 250

So, the radius of this curve should be 250 meters. 

c. As the radius increases, the outer rail needs less elevation.

RT.5  Exercises 

State the domain for each equation. There is no need to solve it. 

1. 𝑥𝑥+5
4
− 𝑥𝑥+3

3
= 𝑥𝑥

6
2. 5

6𝑎𝑎
− 𝑎𝑎

4
= 8

2𝑎𝑎

3. 3
𝑥𝑥+4

= 2
𝑥𝑥−9

4. 4
3𝑥𝑥−5

+ 2
𝑥𝑥

= 9
4𝑥𝑥+7

5. 4
𝑦𝑦2−25

− 1
𝑦𝑦+5

= 2
𝑦𝑦−7

6. 𝑥𝑥
2𝑥𝑥−6

− 3
𝑥𝑥2−6𝑥𝑥+9

= 𝑥𝑥−2
3𝑥𝑥−9

Solve each equation. 

7. 3
8

+ 1
3

= 𝑥𝑥
12

8. 1
4
− 5

6
= 1

𝑦𝑦

9. 𝑥𝑥 + 8
𝑥𝑥

= −9 10. 4
3𝑎𝑎
− 3

𝑎𝑎
= 10

3

11. 𝑟𝑟
8

+ 𝑟𝑟−4
12

= 𝑟𝑟
24

12. 𝑛𝑛−2
2
− 𝑛𝑛

6
= 4𝑛𝑛

9

Solution 

radius (m) 

el
ev

at
io

n 
(c

m
) 

10 

𝑓𝑓(𝑟𝑟) 

𝑟𝑟 

20 

300 

40 

30 

500 100 

50 
𝑓𝑓(𝑟𝑟) =

3000
𝑟𝑟
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13. 5
𝑟𝑟+20

= 3
𝑟𝑟
 14. 5

𝑎𝑎+4
= 3

𝑎𝑎−2

15. 𝑦𝑦+2
𝑦𝑦

= 5
3
 16. 𝑥𝑥−4

𝑥𝑥+6
= 2𝑥𝑥+3

2𝑥𝑥−1
 

17. 𝑥𝑥
𝑥𝑥−1

− 𝑥𝑥2

𝑥𝑥−1
= 5 18. 3− 12

𝑥𝑥2
= 5

𝑥𝑥
 

19. 1
3
− 𝑥𝑥−1

𝑥𝑥
= 𝑥𝑥

3
20. 1

𝑥𝑥
+ 2

𝑥𝑥+10
= 𝑥𝑥

𝑥𝑥+10

21. 1
𝑦𝑦−1

+ 5
12

= −2
3𝑦𝑦−3

22. 7
6𝑥𝑥+3

− 1
3

= 2
2𝑥𝑥+1

23. 8
3𝑘𝑘+9

− 8
15

= 2
5𝑘𝑘+15

24. 6
𝑚𝑚−4

+ 5
𝑚𝑚

= 2
𝑚𝑚2−4𝑚𝑚

25. 3
𝑦𝑦−2

+ 2𝑦𝑦
4−𝑦𝑦2

= 5
𝑦𝑦+2

26. 𝑥𝑥
𝑥𝑥−2

+ 𝑥𝑥
𝑥𝑥2−4

= 𝑥𝑥+3
𝑥𝑥+2

 

27. 1
2𝑥𝑥+10

= 8
𝑥𝑥2−25

− 2
𝑥𝑥−5

28. 5
𝑦𝑦+3

= 1
4𝑦𝑦2−36

+ 2
𝑦𝑦−3

29. 6
𝑥𝑥2−4𝑥𝑥+3

− 1
𝑥𝑥−3

= 1
4𝑥𝑥−4

30. 7
𝑥𝑥−2

− 8
𝑥𝑥+5

= 1
2𝑥𝑥2+6𝑥𝑥−20

31. 5
𝑥𝑥−4

− 3
𝑥𝑥−1

= 𝑥𝑥2−1
𝑥𝑥2−5𝑥𝑥+4

32. 𝑦𝑦
𝑦𝑦+1

+ 3𝑦𝑦+5
𝑦𝑦2+4𝑦𝑦+3

= 2
𝑦𝑦+3

33. 3𝑥𝑥
𝑥𝑥+2

+ 72
𝑥𝑥3+8

= 24
𝑥𝑥2−2𝑥𝑥+4

34. 4
𝑥𝑥+3

+ 7
𝑥𝑥2−3𝑥𝑥+9

= 108
𝑥𝑥3+27

35. 𝑥𝑥
2𝑥𝑥−9

− 3𝑥𝑥 = 10
9−2𝑥𝑥

36. −2
𝑥𝑥2+2𝑥𝑥−3

− 5
3−3𝑥𝑥

= 4
3𝑥𝑥+9

For the given rational function 𝑓𝑓, find all values of 𝑥𝑥 for which 𝑓𝑓(𝑥𝑥) has the indicated value. 

37. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 − 15
𝑥𝑥

;   𝑓𝑓(𝑥𝑥) = 1     38. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−5
𝑥𝑥+1

;   𝑓𝑓(𝑥𝑥) = 3
5
 

39. 𝑔𝑔(𝑥𝑥) = −3𝑥𝑥
𝑥𝑥+3

+ 𝑥𝑥;   𝑔𝑔(𝑥𝑥) = 4 40. 𝑔𝑔(𝑥𝑥) = 4
𝑥𝑥

+ 1
𝑥𝑥−2

;   𝑔𝑔(𝑥𝑥) = 3 

Graph each rational function. State its domain, range and the equations of the vertical and horizontal 
asymptotes.  

41. 𝑓𝑓(𝑥𝑥) = 2
𝑥𝑥

42. 𝑔𝑔(𝑥𝑥) = − 1
𝑥𝑥

43. ℎ(𝑥𝑥) = 2
𝑥𝑥−3

44. 𝑓𝑓(𝑥𝑥) = −1
𝑥𝑥+1

45. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥−1
𝑥𝑥+2

46. ℎ(𝑥𝑥) = 𝑥𝑥+2
𝑥𝑥−3

For each function 𝑓𝑓, find its reciprocal function 𝑔𝑔(𝑥𝑥) = 1
𝑓𝑓(𝑥𝑥)

 and graph both functions on the same grid. Then, 

state the equations of the vertical and horizontal asymptotes of function 𝑔𝑔. 

47. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥 + 1 48. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥 + 2 49. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥 − 3
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Solve each equation. 

50. 𝑥𝑥
1 + 1

𝑥𝑥+1
= 𝑥𝑥 − 3 51. 

2 − 1𝑥𝑥
4 − 1

𝑥𝑥2
= 1 

Solve each problem. 

52. Suppose that the number of vehicles searching for a parking place at UFV
parking lot is modelled by the function

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2

2(1−𝑥𝑥)
,

where 0 ≤ 𝑥𝑥 < 1 is a quantity known as traffic intensity. 

a. For each traffic intensity, find the number of vehicles searching for a parking place. Round your answer
to the nearest one.
i. 0.2 ii. 0.8 iii. 0.98

b. Observing answers to part (a), conclude how does the number of vehicles searching for a parking place
changes when the traffic intensity get closer to 1.

53. Suppose that the percent of deaths caused by smoking, called the incidence rate, is modelled by the rational
function 

𝐷𝐷(𝑥𝑥) =
𝑥𝑥 − 1
𝑥𝑥

, 

where 𝑥𝑥 tells us how many times a smoker is more likely to die of lung cancer than a non-
smoker.  

a. Find 𝐷𝐷(10) and interpret it in the context of the problem.
b. Find the 𝑥𝑥-value corresponding to the incidence rate of 0.5.
c. Under what condition would the incidence rate equal to 0?
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RT6 Applications of Rational Equations 

In previous sections of this chapter, we studied operations on rational expressions, 
simplifying complex fractions, and solving rational equations. These skills are needed when 
working with real-world problems that lead to a rational equation. The common types of 
such problems are motion or work problems. In this section, we first discuss how to solve 
a rational formula for a given variable, and then present several examples of application 
problems involving rational equations.  

Formulas Containing Rational Expressions 

Solving application problems often involves working with formulas. We might need to 
form a formula, evaluate it, or solve it for a desired variable. The basic strategies used to 
solve a formula for a variable were shown in Section L2 and F4. Recall the guidelines that 
we used to isolate the desired variable: 

 Reverse operations to clear unwanted factors or addends;
Example: To solve  𝐴𝐴+𝐵𝐵

2
= 𝐶𝐶 for 𝐴𝐴, we multiply by 2 and then subtract 𝐵𝐵. 

 Multiply by the LCD to keep the desired variable in the numerator;
Example: To solve  𝐴𝐴

1+𝑟𝑟
= 𝑃𝑃 for 𝑟𝑟, first, we multiply by (1 + 𝑟𝑟).

 Take the reciprocal of both sides of the equation to keep the desired variable in
the numerator (this applies to proportions only);
Example: To solve  1

𝐶𝐶
= 𝐴𝐴+𝐵𝐵

𝐴𝐴𝐴𝐴
 for 𝐶𝐶, we can take the reciprocal of both sides to 

obtain 𝐶𝐶 = 𝐴𝐴𝐴𝐴
𝐴𝐴+𝐵𝐵

 . 

 Factor to keep the desired variable in one place.
Example: To solve  𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴 for 𝑃𝑃, we first factor 𝑃𝑃 out.

Below we show how to solve formulas containing rational expressions, using a combination 
of the above strategies. 

Solving Rational Formulas for a Given Variable 

Solve each formula for the indicated variable.  
a. 1

𝑓𝑓
= 1

𝑝𝑝
+ 1

𝑞𝑞
,   for 𝑝𝑝 b. 𝐿𝐿 = 𝑑𝑑𝑑𝑑

𝐷𝐷−𝑑𝑑
,   for 𝐷𝐷 c. 𝐿𝐿 = 𝑑𝑑𝑑𝑑

𝐷𝐷−𝑑𝑑
,   for 𝑑𝑑 

a. Solution I: First, we isolate the term containing 𝑝𝑝, by ‘moving’  1
𝑞𝑞
  to the other side 

of the equation. So,
1
𝑓𝑓

=
1
𝑝𝑝

+
1
𝑞𝑞

1
𝑓𝑓
−

1
𝑞𝑞

=
1
𝑝𝑝

1
𝑝𝑝

=
𝑞𝑞 − 𝑓𝑓
𝑓𝑓𝑓𝑓

rewrite from the 
right to the left 

Solution 

and perform the subtraction to 
leave this side as a single fraction 
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Then, to bring 𝑝𝑝 to the numerator, we can take the reciprocal of both sides of the 
equation, obtaining 

𝒑𝒑 =
𝒇𝒇𝒇𝒇
𝒒𝒒 − 𝒇𝒇

Caution! This method can be applied only to a proportion (an equation with a single 
fraction on each side). 

Solution II: The same result can be achieved by multiplying the original equation by 
the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓𝑓𝑓𝑓𝑓, as shown below 

1
𝑓𝑓

=
1
𝑝𝑝

+
1
𝑞𝑞

𝑝𝑝𝑞𝑞 = 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑝𝑝 

𝑝𝑝𝑞𝑞 − 𝑓𝑓𝑝𝑝 = 𝑓𝑓𝑓𝑓 

𝑝𝑝(𝑞𝑞 − 𝑓𝑓) = 𝑓𝑓𝑓𝑓 

𝒑𝒑 =
𝒇𝒇𝒇𝒇
𝒒𝒒 − 𝒇𝒇

b. To solve  𝐿𝐿 = 𝑑𝑑𝑑𝑑
𝐷𝐷−𝑑𝑑

  for 𝐷𝐷, we may start with multiplying the equation by the 
denominator to bring the variable 𝐷𝐷 to the numerator. So, 

𝐿𝐿 =
𝑑𝑑𝑑𝑑

𝐷𝐷 − 𝑑𝑑

𝐿𝐿(𝐷𝐷 − 𝑑𝑑) = 𝑑𝑑𝑑𝑑 

𝐷𝐷 − 𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝐿𝐿

 𝑫𝑫 =
𝒅𝒅𝒅𝒅
𝑳𝑳

+ 𝒅𝒅 =
𝒅𝒅𝒅𝒅 + 𝒅𝒅𝒅𝒅

𝑳𝑳

c. When solving  𝐿𝐿 = 𝑑𝑑𝑑𝑑
𝐷𝐷−𝑑𝑑

  for 𝑑𝑑, we first observe that the variable 𝑑𝑑 appears in both the
numerator and denominator. Similarly as in the previous example, we bring the 𝑑𝑑 from
the denominator to the numerator by multiplying the formula by the denominator 𝐷𝐷 −
𝑑𝑑. Thus,

𝐿𝐿 =
𝑑𝑑𝑅𝑅

𝐷𝐷 − 𝑑𝑑
𝐿𝐿(𝐷𝐷 − 𝑑𝑑) = 𝑑𝑑𝑅𝑅. 

Then, to keep the 𝑑𝑑 in one place, we need to expand the bracket, collect terms with 𝑑𝑑, 
and finally factor the 𝑑𝑑 out. So, we have 

 factor 𝑝𝑝 out 

This can be done in one step by 
interchanging 𝐿𝐿 with 𝐷𝐷 − 𝑑𝑑. 

The movement of the 
expressions resembles that of a 

teeter-totter. 

Both forms are 
correct answers. 
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𝐿𝐿𝐿𝐿 − 𝐿𝐿𝑑𝑑 = 𝑑𝑑𝑅𝑅 

𝐿𝐿𝐿𝐿 = 𝑑𝑑𝑅𝑅 + 𝐿𝐿𝑑𝑑 

𝐿𝐿𝐿𝐿 = 𝑑𝑑(𝑅𝑅 + 𝐿𝐿) 
𝐿𝐿𝐿𝐿
𝑅𝑅 + 𝐿𝐿

= 𝑑𝑑 

The final formula can be written equivalently starting with 𝑑𝑑, 

𝒅𝒅 =
𝑳𝑳𝑳𝑳
𝑹𝑹 + 𝑳𝑳

. 

Forming and Evaluating a Rational Formula 

Suppose a trip consists of two parts of the same distance 𝑑𝑑. 

a. Given the speed 𝑣𝑣1 for the first part of the trip and 𝑣𝑣2 for the second part of the trip,
find a formula for the average speed 𝑣𝑣 for the whole trip. (Make sure to leave this
formula in the simplified form.)

b. Find the average speed 𝑣𝑣 for the whole trip, if the speed for the first part of the trip
was 75 km/h and the speed for the second part of the trip was 105 km/h.

c. How does the 𝑣𝑣-value from (b) compare to the average of 𝑣𝑣1 and 𝑣𝑣2?

a. The total distance, 𝐷𝐷, for the whole trip is 𝑑𝑑 + 𝑑𝑑 = 2𝑑𝑑. The total time, 𝑇𝑇, for the whole
trip is the sum of the times for the two parts of the trip, 𝑡𝑡1 and 𝑡𝑡2. From the relation
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, we have

𝑡𝑡1 = 𝑑𝑑
𝑣𝑣1

and   𝑡𝑡2 = 𝑑𝑑
𝑣𝑣2

. 
Therefore, 

𝑡𝑡 =
𝑑𝑑
𝑣𝑣1

+
𝑑𝑑
𝑣𝑣2

, 

which after substituting to the formula for the average speed, 𝑉𝑉 = 𝐷𝐷
𝑇𝑇

, gives us 

𝑉𝑉 =
2𝑑𝑑

𝑑𝑑
𝑣𝑣1

+ 𝑑𝑑
𝑣𝑣2

. 

Since the formula involves a complex fraction, it should be simplified. We can do this 
by multiplying the numerator and denominator by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑣𝑣1𝑣𝑣2. So, we have 

𝑉𝑉 =
2𝑑𝑑

𝑑𝑑
𝑣𝑣1

+ 𝑑𝑑
𝑣𝑣2

∙
𝑣𝑣1𝑣𝑣2
𝑣𝑣1𝑣𝑣2

𝑉𝑉 =
2𝑑𝑑𝑣𝑣1𝑣𝑣2

𝑑𝑑𝑣𝑣1𝑣𝑣2
𝑣𝑣1

+ 𝑑𝑑𝑣𝑣1𝑣𝑣2
𝑣𝑣2

Solution 
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𝑉𝑉 =
2𝑑𝑑𝑣𝑣1𝑣𝑣2
𝑑𝑑𝑣𝑣2 + 𝑑𝑑𝑣𝑣1

𝑉𝑉 =
2𝑑𝑑𝑣𝑣1𝑣𝑣2

𝑑𝑑(𝑣𝑣2 + 𝑣𝑣1)

𝑽𝑽 =
𝟐𝟐𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐
𝒗𝒗𝟐𝟐 + 𝒗𝒗𝟏𝟏

Note 1: The average speed in this formula does not depend on the distance travelled. 

Note 2: The average speed for the total trip is not the average (arithmetic mean) of 
the speeds for each part of the trip. In fact, this formula represents the 
harmonic mean of the two speeds. 

b. Since 𝑣𝑣1 = 75 km/h and 𝑣𝑣2 = 105 km/h, using the formula developed in Example 2a,
we calculate

𝑣𝑣 =
2 ∙ 75 ∙ 105
75 + 105

=
15750

180
= 𝟖𝟖𝟖𝟖.𝟓𝟓 𝐤𝐤𝐤𝐤/𝐡𝐡 

c. The average speed for the whole trip, 𝑣𝑣 = 87.5 km/h, is lower than the average of the
speeds for each part of the trip, which is 75+105

2
= 90 km/h.

Applied Problems 

Many types of application problems were already introduced in Sections L3 and E2. Some 
of these types, for example motion problems, may involve solving rational equations. 
Below we show examples of proportion and motion problems as well as introduce another 
type of problems, work problems.  

Proportion Problems 

When forming a proportion, 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

=
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

, 

it is essential that the same type of data is placed in the same row or the same column. 

Recall:  To solve a proportion 
𝒂𝒂
𝒃𝒃

=
𝒄𝒄
𝒅𝒅

 , 

for example, for 𝑎𝑎, it is enough to multiply the equation by 𝑏𝑏.  This gives us 

𝒂𝒂 =
𝒃𝒃𝒃𝒃
𝒅𝒅

. 

factor the 𝑑𝑑 
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Similarly, to solve 
𝒂𝒂
𝒃𝒃

=
𝒄𝒄
𝒅𝒅

for 𝑏𝑏, we can use the cross-multiplication method, which eventually (we encourage the 
reader to check this) leads us to  

𝒂𝒂 =
𝒂𝒂𝒂𝒂
𝒄𝒄

. 

Notice that in both cases the desired variable equals the product of the blue variables lying 
across each other, divided by the remaining purple variable. This is often referred to as 
the ‘cross multiply and divide’ approach to solving a proportion.  

In statistics, proportions are often used to estimate the population by analysing its sample 
in situations where the exact count of the population is too costly or not possible to obtain. 

Estimating Numbers of Wild Animals 

To estimate the number of wild horses in a particular area in Nevada, a forest ranger catches 
452 wild horses, tags them, and releases them. In a week, he catches 95 horses out of which 
10 are found to be tagged. Assuming that the horses mix freely when they are released, 
estimate the number of wild horses in this region. Round your answer to the nearest 
hundreds. 

Suppose there are 𝑥𝑥 wild horses in region. 452 of them were tagged, 
so the ratio of the tagged horses to the whole population of the wild 
horses there is 

452
𝑥𝑥

The ratio of the tagged horses found in the sample of 95 horses 
caught in the later time is 

10
95

So, we form the proportion: 

452
𝑥𝑥

=
10
95

 

After solving for 𝑥𝑥, we have 

𝑥𝑥 =
452 ∙ 95

10
= 4294 ≈ 4300 

So, we can say that approximatly 4300 wild horses live in this region. 

Solution 

452 

95 

10 

x wild horses 

 tagged horses 

 all horses 

 population  sample 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑻𝑻 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑫𝑫
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑹𝑹

In geometry, proportions are the defining properties of similar figures. One frequently used 
theorem that involves proportions is the theorem about similar triangles, attributed to the 
Greek mathematician Thales. 

Thales’ Theorem Two triangles are similar iff the ratios of the corresponding sides are the same. 

⊿𝑨𝑨𝑨𝑨𝑨𝑨 ∼ ⊿𝑨𝑨𝑩𝑩′𝑪𝑪′ ⇔
𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨′

=
𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨′

=
𝑩𝑩𝑩𝑩
𝑩𝑩′𝑪𝑪′

Using Similar Triangles in an Application Problem 

A cross-section of a small storage room is in the shape of a right triangle 
with a height of 2 meters and a base of 1.2 meters, as shown in Figure 
6.1a. Find the size of the largest cubic box fitting in this room when placed 
with its base on the floor. 

Suppose that the height of the box is 𝑥𝑥 meters. Since the height of the 
storage room is 2 meters, the expression 2 − 𝑥𝑥 represents the height of the 
wall above the box, as shown in Figure 6.1b. 

Since the blue and brown triangles are similar, we can use the Thales’ Theorem to form the 
proportion 

2− 𝑥𝑥
2

=
𝑥𝑥

1.2
. 

Employing cross-multiplication, we obtain 

2.4− 1.2𝑥𝑥 = 2𝑥𝑥 

2.4 = 3.2𝑥𝑥 

𝑥𝑥 =
2.4
3.2

= 𝟎𝟎.𝟕𝟕𝟕𝟕 

So, the dimensions of the largest cubic box fitting in this storage room are 75 cm by 75 cm 
by 75 cm.  

Motion Problems 

Motion problems in which we compare times usually involve solving rational equations. 
This is because when solving the motion formula 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑹𝑹 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑻𝑻 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑫𝑫 for time, 
we create a fraction 

Solution 

𝐴𝐴 
𝐵𝐵 

𝐶𝐶 
𝐶𝐶’ 

𝐵𝐵’ 

𝒙𝒙 

𝒙𝒙 

𝟏𝟏.𝟐𝟐 

𝟐𝟐 

Figure 6.1a 

𝑥𝑥 
2 

1.2 

2
−
𝑥𝑥 

Figure 6.1b 
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Solving a Motion Problem Where Times are the Same 

Two bikers participate in a Cross-Mountain Crusher. One biker is 2 km/h faster than the 
other. The faster biker travels 35 km in the same amount of time that it takes the slower 
biker to cover only 30 km. Find the average speed of each biker. 

Let 𝑟𝑟 represent the average speed of the slower biker. Then 𝑟𝑟 + 2 represents the average 
speed of the faster biker. The slower biker travels 30 km, while the faster biker travels 35 
km. Now, we can complete the table 

Since the time of travel is the same for both bikers, we form and then solve the equation: 

30
𝑟𝑟

=
35
𝑟𝑟 + 2

6(𝑟𝑟 + 2) = 7𝑟𝑟 

6𝑟𝑟 + 12 = 7𝑟𝑟 

𝑟𝑟 = 12 

Thus, the average speed of the slower biker is 𝑟𝑟 = 𝟏𝟏𝟏𝟏 km/h and the average speed of the 
faster biker is 𝑟𝑟 + 2 = 𝟏𝟏𝟏𝟏 km/h. 

Solving a Motion Problem Where the Total Time is Given 

Judy and Nathan drive from Abbotsford to Kelowna, a distance of 322 km. Judy’s average 
driving rate is 5 km/h faster than Nathan’s. Judy got tired after driving the first 154 
kilometers, so Nathan drove the remaining part of the trip. If the total driving time was 3 
hours, what was the average rate of each driver? 

Let 𝑟𝑟 represent Nathan’s average rate. Then 𝑟𝑟 + 5 represents Judy’s average rate. Since 
Judy drove 154 km, Nathan drove 322 − 154 = 168 km. Now, we can complete the table: 

Note: In motion problems we may 
add times or distances but we usually 
do not add rates! 

     𝑹𝑹    ∙ 𝑻𝑻 =    𝑫𝑫 

slower biker 𝑟𝑟 
30
𝑟𝑟

30 

faster biker 𝑟𝑟 + 2 
35
𝑟𝑟 + 2

35 

     𝑹𝑹    ∙ 𝑻𝑻 =    𝑫𝑫 

Judy 𝑟𝑟 + 5 
154
𝑟𝑟 + 5

154 

Nathan 𝑟𝑟 
168
𝑟𝑟

168 

total 3 322 

Solution 

Solution 

 
To complete the Time 
column, we divide the 
Distance by the Rate. 
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The equation to solve comes from the Time column. 

154
𝑟𝑟 + 5

+
168
𝑟𝑟

= 3 

154𝑟𝑟 + 168(𝑟𝑟 + 5) = 3𝑟𝑟(𝑟𝑟 + 5) 

154𝑟𝑟 + 168𝑟𝑟 + 840 = 3𝑟𝑟2 + 15𝑟𝑟 

0 = 3𝑟𝑟2 − 307𝑟𝑟 − 840 

(3𝑟𝑟 + 8)(𝑟𝑟 − 105) = 0 

𝑟𝑟 = −8
3
    𝑜𝑜𝑜𝑜   𝑟𝑟 = 105 

Since a rate cannot be negative, we discard the solution 𝑟𝑟 = −8
3. Therefore, Nathan’s 

average rate was 𝑟𝑟 = 𝟏𝟏𝟏𝟏𝟏𝟏 km/h and Judy’s average rate was 𝑟𝑟 + 5 = 𝟏𝟏𝟏𝟏𝟏𝟏 km/h. 

Work Problems 

 When solving work problems, refer to the formula 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∙ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑱𝑱𝑱𝑱𝑱𝑱 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

and organize data in a table like this: 

Note: In work problems we usually 
add rates but do not add times! 

Solving a Work Problem Involving Addition of Rates 

Adam can trim the shrubs at Centralia College in 8 hr. Bruce can do the 
same job in 6 hr. To the nearest minute, how long would it take them to 
complete the same trimming job if they work together? 

Let 𝑡𝑡 be the time needed to trim the shrubs when Adam and Bruce work together. Since 
trimming the shrubs at Centralia College is considered to be the whole one job to complete, 
then the rate 𝑅𝑅 in which this work is done equals 

𝑹𝑹 =
𝑱𝑱𝑜𝑜𝑜𝑜
𝑻𝑻𝑖𝑖𝑖𝑖𝑖𝑖

=
𝟏𝟏

𝑻𝑻𝑖𝑖𝑖𝑖𝑖𝑖
. 

To organize the information, we can complete the table below. 

     𝑹𝑹    ∙ 𝑻𝑻 =   J 
worker I 
worker II 
together 

Notice the 
similarity to the 

formula 𝑹𝑹 ∙ 𝑻𝑻 = 𝑫𝑫 
used in motion 

problems. 

Solution 
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Since the rate of work when both Adam and Bruce trim the shrubs is the sum of rates of 
individual workers, we form and solve the equation 

1
8

+
1
6

=
1
𝑡𝑡

3𝑡𝑡 + 4𝑡𝑡 = 24 

7𝑡𝑡 = 24 

𝑡𝑡 =
24
7
≈ 3.43 

So, if Adam and Bruce work together, the amount of time needed to complete the job would 
be approximately 3.43 hours ≈ 3 hours 26 minutes. 

Note:  The time needed for both workers is shorter than either of the individual times. 

Solving a Work Problem Involving Subtraction of Rates 

The inlet pipe can fill a swimming pool in 4 hours, while the outlet pipe can empty the pool 
in 5 hours. If both pipes were left open, how long would it take to fill the pool? 

Suppose 𝑡𝑡 is the time needed to fill the pool when both pipes are left open. If filling the 
pool is the whole one job to complete, then emptying the pool corresponds to −1 job. This 
is because when emptying the pool, we reverse the filling job. 

To organize the information given in the problem, we complete the following table. 

     𝑹𝑹    ∙ 𝑻𝑻 =    𝑱𝑱 

Adam 𝟏𝟏
𝟖𝟖

8 1 

Bruce 𝟏𝟏
𝟔𝟔

6 1 

together 𝟏𝟏
𝒕𝒕

𝑡𝑡 1 

     𝑹𝑹    ∙ 𝑻𝑻 =    𝑱𝑱 

inlet pipe 𝟏𝟏
𝟒𝟒

4 1 

outlet pipe −
𝟏𝟏
𝟓𝟓

5 −1

both pipes 𝟏𝟏
𝒕𝒕

𝑡𝑡 1 

Solution 

To complete the Rate 
column, we divide the 

Job by the Time. 

The job column is often 
equal to 1, although 

sometimes other values 
might need to be used. 
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The equation to solve comes from the Rate column. 

1
4
−

1
5

=
1
𝑡𝑡

5𝑡𝑡 − 4𝑡𝑡 = 20 

𝑡𝑡 = 20 

So, it will take 20 hours to fill the pool when both pipes are left open. 

Inverse and Combined Variation 

When two quantities vary in such a way that their product remains constant, we say that 
they are inversely proportional. For example, consider rate 𝑅𝑅 and time 𝑇𝑇 of a moving 
object that covers a constant distance 𝐷𝐷. In particular, if 𝐷𝐷 = 100 km, we have 

𝑅𝑅 = 100
𝑇𝑇

= 100 ∙ 1
𝑇𝑇
 

This relation tells us that the rate is 100 times larger than the reciprocal of time. 
Observe though that when the time doubles, the rate is half as large. When the time 
triples, the rate is three times smaller, and so on. One can observe that the rate 
decreases proportionally to the increase of time. Such a reciprocal relation between 
the two quantities is called an inverse variation. 

Definition 6.1 Two quantities, 𝒙𝒙 and 𝒚𝒚, are inversely proportional to each other (there is an inverse 
variation between them) iff there is a real constant 𝒌𝒌 ≠ 𝟎𝟎, such that 

𝒚𝒚 =
𝒌𝒌
𝒙𝒙

. 

We say that 𝒚𝒚 varies inversely as 𝒙𝒙 with the variation constant 𝒌𝒌. 
(or equivalently: 𝒚𝒚 is inversely proportional to 𝒙𝒙 with the proportionality constant 𝒌𝒌.) 

Solving Inverse Variation Problems 

The volume 𝑉𝑉 of a gas is inversely proportional to the pressure 𝑃𝑃 of the gas. If a pressure 
of 30 kg/cm2 corresponds to a volume of 240 cm3, find the following: 
a. The equation that relates 𝑉𝑉 and 𝑃𝑃,
b. The pressure needed to produce a volume of 150 cm3.

a. To find the inverse variation equation that relates 𝑉𝑉 and 𝑃𝑃, we need to find the variation
constant 𝑘𝑘 first. This can be done by substituting 𝑉𝑉 = 240 and 𝑃𝑃 = 30 into the
equation 𝑉𝑉 = 𝑘𝑘

𝑃𝑃
. So, we obtain

240 =
𝑘𝑘

30
𝑘𝑘 = 7200. 

Therefore, our equation is 𝑽𝑽 = 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
𝑷𝑷

.  

Solution 

Time in hours 

Ra
te

 in
 k

m
/h

 

50 

𝑅𝑅(𝑇𝑇) 

𝑇𝑇 

100 

3 

200 
150 

5 1 

250 
𝑅𝑅(𝑇𝑇) =

100
𝑇𝑇
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  ‘swap’ 150 and 𝑃𝑃 

b. The required pressure can be found by substituting 𝑉𝑉 = 150 into the inverse variation
equation,

150 =
7200
𝑃𝑃

. 

This gives us 

𝑃𝑃 =
7200
150 = 48. 

So, the pressure of the gas that assumes the volume of 150 cm3 is 48 kg/cm2. 

Extension: We say that 𝒚𝒚 varies inversely as the 𝒏𝒏-th power of 𝒙𝒙  iff  𝒚𝒚 = 𝒌𝒌
𝒙𝒙𝒏𝒏

,  for 
some nonzero constant 𝒌𝒌. 

Solving an Inverse Variation Problem Involving the Square of a Variable 

The intensity of light varies inversely as the square of the distance from the light source. If 
4 meters from the source the intensity of light is 9 candelas, what is the intensity of this 
light 3 meters from the source? 

Let 𝐼𝐼 represents the intensity of the light and 𝑑𝑑 the distance from the source of this light. 
Since 𝐼𝐼 varies inversely as 𝑑𝑑2, we set the equation  

𝐼𝐼 =
𝑘𝑘
𝑑𝑑2

After substituting the data given in the problem, we find the value of 𝑘𝑘: 

9 =
𝑘𝑘
42

𝑘𝑘 = 9 ∙ 16 = 144 

So, the inverse variation equation is 𝐼𝐼 = 144
𝑑𝑑2

. Hence, the light intensity at 3 meters from the 

source is  𝐼𝐼 = 144
32

= 𝟏𝟏𝟏𝟏 candelas. 

Recall from Section L2 that two variables, say 𝒙𝒙 and 𝒚𝒚, vary directly with a proportionality 
constant 𝒌𝒌 ≠ 𝟎𝟎 if 𝒚𝒚 = 𝒌𝒌𝒌𝒌. Also, we say that one variable, say 𝒛𝒛, varies jointly as other 
variables, say 𝒙𝒙 and 𝒚𝒚, with a proportionality constant 𝒌𝒌 ≠ 𝟎𝟎 if 𝒛𝒛 = 𝒌𝒌𝒌𝒌𝒌𝒌. 

Definition 6.2 A combination of the direct or joint variation with the inverse variation is called a 
combined variation. 

Example: 
𝒘𝒘 may vary jointly as 𝒙𝒙 and 𝒚𝒚 and inversely as the square of 𝒛𝒛. This means that there is a 
real constant 𝒌𝒌 ≠ 𝟎𝟎, such that 

𝒘𝒘 =
𝒌𝒌𝒌𝒌𝒌𝒌
𝒛𝒛𝟐𝟐

. 

Solution 
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Solving Combined Variation Problems 

The resistance of a cable varies directly as its length and inversely as the square of its 
diameter. A 20-meter cable with a diameter of 1.2 cm has a resistance of 0.2 ohms. A 50-
meter cable with a diameter of 0.6 cm is made out of the same material. What would be its 
resistance?  

Let 𝑅𝑅, 𝑙𝑙, and 𝑑𝑑 represent respectively the resistance, length, and diameter of a cable. Since 
𝑅𝑅 varies directly as 𝑙𝑙 and inversely as 𝑑𝑑2, we set the combined variation equation  

𝑅𝑅 =
𝑘𝑘𝑘𝑘
𝑑𝑑2

. 

Substituting the data given in the problem, we have 

0.2 =
𝑘𝑘 ∙ 20
1.22

, 

 which gives us 

𝑘𝑘 =
0.2 ∙ 1.44

20
= 0.0144 

So, the combined variation equation is 𝑅𝑅 = 0.0144𝑙𝑙
𝑑𝑑2

. Therefore, the resistance of a 50-meter 

cable with the diameter of 0.6 cm is  𝑅𝑅 = 0.0144∙50
0.62

= 𝟐𝟐 ohms. 

RT.6  Exercises 

1. Using the formula  1
𝑟𝑟

= 1
𝑝𝑝

+ 1
𝑞𝑞

,  find 𝑞𝑞 if 𝑟𝑟 = 6 and 𝑝𝑝 = 10. 

2. The gravitational force between two masses is given by the formula  𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺
𝑑𝑑2

.  
Find 𝑀𝑀 if  𝐹𝐹 =  20,  𝐺𝐺 = 6.67 ∙ 10−11,  𝑚𝑚 = 1,  and  𝑑𝑑 = 4 ∙ 10−6. Round your answer to one decimal 
place. 

3. What is the first step in solving the formula 𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘 = 𝑎𝑎 − 𝑏𝑏 for 𝑘𝑘?

4. What is the first step in solving the formula 𝐴𝐴 = 𝑝𝑝𝑝𝑝
𝑞𝑞−𝑝𝑝

 for 𝑝𝑝? 

Solve each formula for the specified variable. 

5. 𝑚𝑚 = 𝐹𝐹
𝑎𝑎
   for 𝑎𝑎     6. 𝐼𝐼 = 𝐸𝐸

𝑅𝑅
  for 𝑅𝑅 7. 𝑊𝑊1

𝑊𝑊2
= 𝑑𝑑1

𝑑𝑑2
   for 𝑑𝑑1 

8. 𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺
𝑑𝑑2

   for 𝑚𝑚  9. 𝑠𝑠 = (𝑣𝑣1+𝑣𝑣2)𝑡𝑡
2

  for 𝑡𝑡  10. 𝑠𝑠 = (𝑣𝑣1+𝑣𝑣2)𝑡𝑡
2

  for 𝑣𝑣1 

Solution 
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11. 1
𝑅𝑅

= 1
𝑟𝑟1

+ 1
𝑟𝑟2

  for 𝑅𝑅 12. 1
𝑅𝑅

= 1
𝑟𝑟1

+ 1
𝑟𝑟2

  for 𝑟𝑟1 13. 1
𝑝𝑝

+ 1
𝑞𝑞

= 1
𝑓𝑓
   for 𝑞𝑞 

14. 𝑡𝑡
𝑎𝑎

+ 𝑡𝑡
𝑏𝑏

= 1   for 𝑎𝑎 15. 𝑃𝑃𝑃𝑃
𝑇𝑇

= 𝑝𝑝𝑝𝑝
𝑡𝑡

   for 𝑣𝑣 16. 𝑃𝑃𝑃𝑃
𝑇𝑇

= 𝑝𝑝𝑝𝑝
𝑡𝑡

   for 𝑇𝑇 

17. 𝐴𝐴 = ℎ(𝑎𝑎+𝑏𝑏)
2

  for 𝑏𝑏 18. 𝑎𝑎 = 𝑉𝑉−𝑣𝑣
𝑡𝑡

  for 𝑉𝑉 19. 𝑅𝑅 = 𝑔𝑔𝑔𝑔
𝑔𝑔+𝑠𝑠

  for 𝑠𝑠 

20. 𝐼𝐼 = 2𝑉𝑉
𝑉𝑉+2𝑟𝑟

  for 𝑉𝑉 21. 𝐼𝐼 = 𝑛𝑛𝑛𝑛
𝐸𝐸+𝑛𝑛𝑛𝑛

  for 𝑛𝑛  22. 𝐸𝐸
𝑒𝑒

= 𝑅𝑅+𝑟𝑟
𝑟𝑟

   for 𝑒𝑒 

23. 𝐸𝐸
𝑒𝑒

= 𝑅𝑅+𝑟𝑟
𝑟𝑟

   for 𝑟𝑟 24. 𝑆𝑆 = 𝐻𝐻
𝑚𝑚(𝑡𝑡1−𝑡𝑡2)

  for 𝑡𝑡1 25. 𝑉𝑉 = 𝜋𝜋ℎ2(3𝑅𝑅−ℎ)
3

  for 𝑅𝑅 

26. 𝑃𝑃 = 𝐴𝐴
1+𝑟𝑟

  for 𝑟𝑟 27. 𝑉𝑉2

𝑅𝑅2
= 2𝑔𝑔

𝑅𝑅+ℎ
  for ℎ  28. 𝑣𝑣 = 𝑑𝑑2−𝑑𝑑1

𝑡𝑡2−𝑡𝑡1
  for 𝑡𝑡2 

Solve each problem. 

29. The ratio of the weight of an object on Earth to the weight of an object on the moon is 200 to 33. What would
be the weight of a 75-kg astronaut on the moon?

30. A 30-meter long ribbon is cut into two sections. How long are the two sections if the ratio of their lengths is
5 to 7?

31. Assume that burning 7700 calories causes a decrease of 1 kilogram in body mass. If walking 7 kilometers in
2 hours burns 700 calories, how many kilometers would a person need to walk at the same rate to lose 1 kg?

32. On a map of Canada, the linear distance between Vancouver and Calgary is 1.8 cm. The flight distance
between the two cities is about 675 kilometers. On this same map, what would be the linear distance between
Calgary and Montreal if the flight distance between the two cities is approximately 3000 kilometers?

33. To estimate the population of Cape Mountain Zebra in South Africa, biologists caught, tagged, and then
released 68 Cape Mountain Zebras. In a month, they caught a random sample of 84 of this type of zebras. It
turned out that 5 of them were tagged. Assuming that zebras mixed freely, approximately how many Cape
Mountain Zebras lived in South Africa?

34. To estimate the number of white bass fish in a particular lake, biologists caught, tagged, and then released
300 of this fish. In two weeks, they returned and collected a random sample of 196 white bass fish. This
sample contained 12 previously tagged fish. Approximately how many white bass fish does the lake have?

35. Eighteen white-tailed eagles are tagged and released into the wilderness. In a few weeks, a sample of 43
white-tailed eagles was examined, and 5 of them were tagged. Estimate the white-tailed eagle population in
this wilderness area.

36. A meter stick casts a 64 cm long shadow. At the same time, a 15-year old cottonwood tree casts an 18-meter
long shadow. To the nearest meter, how tall is the tree?

37. The ratio of corresponding sides of similar triangles is 5 to 3. The two shorter sides of the larger triangle are
5 and 7 units long, correspondingly. Find the length
of each side of the smaller triangle if its longest side 
is 4 units shorter than the corresponding side of the 
larger triangle.   P

RS 

𝑥𝑥 − 4

7 

A 

B C 
5 

𝑥𝑥 
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38. The width of a rectangle is the same as the length of a similar rectangle. If the dimensions of the smaller
rectangle are 7 cm by 12 cm, what are the dimensions of the larger rectangle?

39. Justin runs twice around a park. He averages 20 kilometers per hour during the first round and only 16
kilometers per hour during the second round. What is his average speed for the whole run? Round your answer 
to one decimal place.

40. Robert runs twice around a stadium. He averages 18 km/h during the first round. What should his average
speed be during the second round to have an overall average of 20 km/h for the whole run?

41. Jim’s boat moves at 20 km/h in still water. Suppose it takes the same amount of time
for Jim to travel by his boat either 15 km downriver or 10 km upriver. Find the rate of the
current.

42. The average speed of a plane flying west was 880 km/h. On the return trip, the same
plane averaged only 620 km/h. If the total flying time in both directions was 6 hours, what was the one-way 
distance? 

43. A plane flies 3800 kilometers with the wind, while only 3400 kilometers against the same wind. If the airplane
speed in still air is 900 km/h, find the speed of the wind.

44. Walking on a moving sidewalk, Sarah could travel 40 meters forward in the same time
it would take her to travel 15 meters in the opposite direction. If the rate of the moving
sidewalk was 35 m/min, what was Sarah's rate of walking?

45. Arthur travelled by car from Madrid to Paris. He usually averages 100 km/h on such
trips. This time, due to heavier traffic and few stops, he averaged only 85 km/h, and he
reached his destination 2 hours 15 minutes later than expected. How far did Arthur travel?

46. Tony averaged 100 km/h on the first part of his trip to Lillooet, BC. The second part of his trip was 20
kilometers longer than the first, and his average speed was only 80 km/h. If the second part of the trip took
him 30 minutes longer than the first part, what was the overall distance travelled by Tony?

47. Page is a college student who lives in a near-campus apartment. When she rides her bike to campus, she gets
there 24 min faster than when she walks. If her average walking rate is 4 km/h and her average biking rate is
20 km/h, how far does she live from the campus?

48. Sonia can respond to all the daily e-mails in 2 hours. Betty needs 3 hours to do the same job. If they both
work on responding to e-mails, what portion of this daily job can be done in 1 hour? How much more time
would they need to complete the job?

49. Brenda can paint a deck in 𝑥𝑥 hours, while Tony can do the same job in 𝑦𝑦 hours.
Write a rational expression that represents the portion of the deck that can be painted
by both of them in 4 hours.

50. Aaron and Ben plan to paint a house. Aaron needs 24 hours to paint the house by himself. Ben needs 18 to
do the same job. To the nearest minute, how long would it take them to paint the house if they work together?

51. When working together, Adam and Brian can paint a house in 6 hours. Brian could paint this house on his
own in 10 hours. How long would it take Adam to paint the house working alone?
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52. An experienced floor installer can install a parquet floor twice as fast as an apprentice. Working together, it
takes the two workers 2 days to install the floor in a particular house. How long would it take the apprentice
to do the same job on his own?

53. A pool can be filled in 8 hr and drained in 12 hr.  On one occasion, when filling the pool, the drain was
accidentally left open. How long did it take to fill this pool?

54. One inlet pipe can fill a hot tub in 15 minutes. Another inlet pipe can fill the tub in 10 minutes. An outlet pipe
can drain the hot tub in 18 minutes. How long would it take to fill the hot tub if all three pipes are left open?

55. Two different width escalators can empty a 1470-people auditorium in 12 min. If the wider
escalator can move twice as many people as the narrower one, how many people per hour
can the narrower escalator move?

56. At what times between 3:00 and 4:00 are the minute and hour hands
perfectly lined up?

57. If Miranda drives to work at an average speed of 60 km/h, she is 1 min late. When she
drives at an average speed of 75 km/h, she is 3 min early. How far is Miranda's workplace
from her home?

58. The current in an electrical circuit at a constant potential varies inversely as the resistance of the circuit.
Suppose that the current 𝐼𝐼 is 9 amperes when the resistance 𝑅𝑅 is 10 ohms. Find the current when the resistance
is 6 ohms.

59. Assuming the same rate of work for all workers, the number of workers needed for a job varies inversely as
the time required to complete the job. If it takes 3 hours for 8 workers to build a deck, how long would it take
two workers to build the same deck?

60. The length of a guitar string is inversely proportional to the frequency of the string vibrations. Suppose a 60-
cm long string vibrates at a frequency of 500 Hz (1 hertz = one cycle per second). What is the frequency of
the same string when it is shortened to 50 centimeters?

61. A musical tone’s pitch is inversely proportional to its wavelength. If a wavelength of 2.2 meters corresponds
to a pitch of 420 vibrations per second, find the wavelength of a tone with a pitch of 660 vibrations per
second.

62. The intensity, 𝐼𝐼, of a television signal is inversely proportional to the square of the distance, 𝑑𝑑, from a
transmitter. If 2 km away from the transmitter the intensity is 25 W/m2 (watts per square meter), how far from
the transmitter is a TV set that receives a signal with the intensity of 2.56 W/m2?

63. The weight 𝑊𝑊 of an object is inversely proportional to the square of the distance 𝐷𝐷 from the center of Earth.
To the nearest kilometer, how high above the surface of Earth must a 60-kg astronaut be to weigh half as
much? Assume the radius of Earth to be 6400 km.

64. The number of long-distance phone calls between two cities during a specified period in time varies jointly
as the populations of the cities, 𝑃𝑃1 and 𝑃𝑃2, and inversely as the distance between them. Suppose 80,000 calls
are made between two cities that are 400 km apart and have populations of 70,000 and 100,000. How many
calls are made between Vancouver and Abbotsford that are 70 km apart and have populations of 630,000 and
140,000, respectively?
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65. The force that keeps a car from skidding on a curve is inversely proportional to the radius of the curve and
jointly proportional to the weight of the car and the square of its speed. Knowing that a force of 880 N
(Newtons) keeps an 800-kg car moving at 50 km/h from skidding on a curve of radius 160 m, estimate the
force that would keep the same car moving at 80 km/h from skidding on a curve of radius 200 meters.

66. Suppose that the renovation time is inversely proportional to the number of workers hired for the job. Will
the renovation time decrease more when hiring additional 2 workers in a 4-worker company or a 6-worker
company? Justify your answer.
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Radicals and Radical Functions 
So far we have discussed polynomial and rational expressions and functions. In 
this chapter, we study algebraic expressions that contain radicals. For example, 
3 + √2,  √𝑥𝑥3 − 1, or 1

√5𝑥𝑥−1
. Such expressions are called radical expressions. 

Familiarity with radical expressions is essential when solving a wide variety of 
problems. For instance, in algebra, some polynomial or rational equations have 
radical solutions that need to be simplified. In geometry, due to the frequent use 
of the Pythagorean equation, 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2, the exact distances are often radical 
expressions. In sciences, many formulas involve radicals.  

We begin the study of radical expressions with defining radicals of various degrees and discussing their properties. 
Then, we show how to simplify radicals and radical expressions, and introduce operations on radical expressions. 
Finally, we study the methods of solving radical equations. In addition, similarly as in earlier chapters where we 
looked at the related polynomial and rational functions, we will also define and look at properties of radical 
functions.   

RD1 Radical Expressions, Functions, and Graphs 

Roots and Radicals 

The operation of taking a square root of a number is the reverse operation of squaring a 
number. For example, a square root of 25 is 5 because raising 5 to the second power gives 
us 25. 

Note: Observe that raising −5 to the second power also gives us 25. So, the square root 
of 25 could have two answers, 5 or −5. To avoid this duality, we choose the 
nonnegative value, called the principal square root, for the value of a square root 
of a number. 

The operation of taking a square root is denoted by the symbol √    . So, we have 

√25 = 5,   √0 = 0,   √1 = 1,   √9 = 3, etc.

What about √−4 = ?  Is there a number such that when it is squared, it gives us −4 ? 

Since the square of any real number is nonnegative, the square root of a negative number 
is not a real number. So, when working in the set of real numbers, we can conclude that 

�𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,    √0 = 0,    and    �𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑫𝑫𝑫𝑫𝑫𝑫 

The operation of taking a cube root of a number is the reverse operation of cubing a 
number. For example, a cube root of 8 is 2 because raising 2 to the third power gives us 8.  

This operation is denoted by the symbol √    3 . So, we have 

√83 = 2,   √03 = 0,   √13 = 1,   √273 = 3, etc. 

 
does not 

exist 

https://unsplash.com/photos/EwKXn5CapA4
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Note: Observe that √−83   exists and is equal to −2. This is because (−2)3 = −8. 
Generally, a cube root can be applied to any real number and the sign of the 
resulting value is the same as the sign of the original number. 

Thus, we have 

�𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟑𝟑 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,    √03 = 0,    and    �𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝟑𝟑 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 

The square or cube roots are special cases of n-th degree radicals. 

Definition 1.1 The n-th degree radical of a number 𝑎𝑎 is a number 𝑏𝑏 such that 𝒃𝒃𝒏𝒏 = 𝒂𝒂. 

Notation: 

√𝒂𝒂𝒏𝒏    = 𝒃𝒃 ⇔  𝒃𝒃𝒏𝒏 = 𝒂𝒂 

For example,  √164 = 2 because 24 = 16, 
√−325 = −2 because (−2)5 = −32, 
√0.0273 = 0.3 because (0.3)3 = 0.027. 

Notice: A square root is a second degree radical, customarily denoted by √     rather than 
√    2 . 

Evaluating Radicals 

Evaluate each radical, if possible. 

a. √0.64 b. √1253 c. √−164 d. �− 1
32

5

a. Since 0.64 = (0.8)2, then √0.64 = 0.8.

Advice: To become fluent in evaluating square roots, it is helpful to be familiar with the 
following perfect square numbers: 
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, …, 400, …, 625, … 

b. √1253 = 5  as  53 = 125 

Solution 

take half of the 
decimal places 

radical 

radicand

 degree 
(index, order) 
 

radical symbol 
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Advice: To become fluent in evaluating cube roots, it is helpful to be familiar with the 
following cubic numbers: 
1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, … 

c. √−164   is not a real number as there is no real number which raised to the 4-th power 
becomes negative. 

d. �− 1
32

5 = −1
2
 as  �−1

2
�
5

= − 15

25
= − 1

32

Note: Observe that √−15

√325 = −1
2

 , so �− 1
32

5 = √−15

√325 .

Generally, to take a radical of a quotient, �𝑎𝑎
𝑏𝑏

𝑛𝑛 ,  it is the same as to take the quotient 

of radicals, √𝑎𝑎
𝑛𝑛

√𝑏𝑏𝑛𝑛 . 

Evaluating Radical Expressions 

Evaluate each radical expression. 

a. − √121 b. − √−643 c. �(−3)44  d. �(−6)33  

a. − √121 = −11

b. − √−643 = −(−4) = 4 

c. �(−3)44 = √814 = 3 

Note: If 𝑛𝑛 is even, then √𝒂𝒂𝒏𝒏𝒏𝒏 = �  𝑎𝑎, 𝑖𝑖𝑖𝑖 𝑎𝑎 ≥ 0
−𝑎𝑎, 𝑖𝑖𝑖𝑖 𝑎𝑎 < 0 = |𝒂𝒂|.

For example, √72 = 7 and  �(−7)2 = 7. 

d. �(−6)33 = √−2163 = −6 

Note: If 𝑛𝑛 is odd, then √𝒂𝒂𝒏𝒏𝒏𝒏 = 𝒂𝒂. For example, √533 = 5 but  �(−5)33 = −5. 

Solution 

the result has the same sign 

the result is positive 
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An even degree radical is 
nonnegative, so we must use 
the absolute value operator. 

An odd degree radical assumes the 
sign of the radicand, so we do not 
apply the absolute value operator. 

Summary of Properties of 𝒏𝒏-th Degree Radicals 

 If 𝑛𝑛 is EVEN, then

�𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒏𝒏 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,    �𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑫𝑫𝑫𝑫𝑫𝑫,   and √𝒂𝒂𝒏𝒏𝒏𝒏 = |𝒂𝒂| 

 If 𝑛𝑛 is ODD, then

�𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒏𝒏 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,    �𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,   and √𝒂𝒂𝒏𝒏𝒏𝒏 = 𝒂𝒂 

 For any natural 𝑛𝑛 ≥ 0,  √𝟎𝟎𝒏𝒏 = 𝟎𝟎   and  √𝟏𝟏𝒏𝒏 = 𝟏𝟏. 

Simplifying Radical Expressions Using Absolute Value Where Appropriate 

Simplify each radical, assuming that all variables represent any real number.  

a. �9𝑥𝑥2𝑦𝑦4 b. �−27𝑦𝑦33  c. √𝑎𝑎204 d. −�(𝑘𝑘 − 1)44

a. �9𝑥𝑥2𝑦𝑦4 = �(3𝑥𝑥𝑦𝑦2)2 = |3𝑥𝑥𝑦𝑦2| = 𝟑𝟑|𝒙𝒙|𝒚𝒚𝟐𝟐

Recall: As discussed in Section L6, the absolute value operator has the following 
properties: 

Note: |𝑦𝑦2| = 𝑦𝑦2 as 𝑦𝑦2 is already nonnegative. 

b. �−27𝑦𝑦33 = �(−3𝑦𝑦)33 = −𝟑𝟑𝟑𝟑  

c. √𝑎𝑎204 = �(𝑎𝑎5)44 = |𝑎𝑎5| = |𝒂𝒂|𝟓𝟓

Note: To simplify an expression with an absolute value, we keep the absolute value 
operator as close as possible to the variable(s). 

d. −�(𝑘𝑘 − 1)44 = −|𝒌𝒌 − 𝟏𝟏|

Solution 

|𝒙𝒙𝒙𝒙| = |𝒙𝒙||𝒚𝒚| 

�
𝒙𝒙
𝒚𝒚
� =

|𝒙𝒙|
|𝒚𝒚| 
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Radical Functions 

Since each nonnegative real number 𝑥𝑥 has exactly one principal square root, we can define 
the square root function, 𝒇𝒇(𝒙𝒙) = √𝒙𝒙. The domain 𝐷𝐷𝑓𝑓 of this function is the set of 
nonnegative real numbers, [𝟎𝟎,∞), and so is its range (as indicated in Figure 1). 

To graph the square root function, we 
create a table of values. The easiest 
𝑥𝑥-values for calculation of the 
corresponding 𝑦𝑦-values are the 
perfect square numbers. However, 
sometimes we want to use additional 
𝑥𝑥-values that are not perfect squares. 
Since a square root of such a number, 
for example √2, √3, √6, etc., is an 
irrational number, we approximate 
these values using a calculator.  

For example, to approximate √6, we use the sequence of keying:   √       6   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸   or 

  6     ^    (     1     /     2     )   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 . This is because a square root operator works the 

same way as the exponent of 1
2
. 

Note: When graphing an even degree radical function, it is essential that we find its 
domain first. The end-point of the domain indicates the starting point of the graph, 
often called the vertex. 
For example, since the domain of 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 is [0,∞), the graph starts from the 
point �0, 𝑓𝑓(0)� = (0,0), as in Figure 1. 

Since the cube root can be evaluated for any real number, the domain 𝐷𝐷𝑓𝑓 of the related 
cube root function, 𝒇𝒇(𝒙𝒙) = √𝒙𝒙𝟑𝟑 , is the set of all real numbers, ℝ. The range can be 
observed in the graph (see Figure 2) or by inspecting the expression √𝑥𝑥3 . It is also ℝ. 

To graph the cube root function, we 
create a table of values. The easiest 
𝑥𝑥-values for calculation of the 
corresponding 𝑦𝑦-values are the 
perfect cube numbers. As before, 
sometimes we might need to estimate 
additional 𝑥𝑥-values. For example, to 
approximate √63 , we use the 
sequence of keying:  
√   3     6    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  or 

 6    ^     (     1     /     3     )   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 . 

𝒙𝒙 𝒚𝒚 
𝟎𝟎 0 
𝟏𝟏
𝟒𝟒

1
2

𝟏𝟏 1 
𝟒𝟒 2 
𝟔𝟔 √6 ≈ 2.4

𝒙𝒙 𝒚𝒚 
−𝟖𝟖 −2
−𝟔𝟔 −√63 ≈ −1.8 
−𝟏𝟏 −1
− 𝟏𝟏

𝟖𝟖
− 1

2
𝟎𝟎 0 
𝟏𝟏
𝟖𝟖

1
2

𝟏𝟏 1 
𝟔𝟔 √63 ≈ 1.8 
𝟖𝟖 2 

Figure 1 

𝒇𝒇(𝒙𝒙) = √𝒙𝒙 

𝑥𝑥 

1 

1 
domain 

ra
ng

e 

𝒇𝒇(𝒙𝒙) = √𝒙𝒙𝟑𝟑  

𝑥𝑥 

1 

1 
domain 

ra
ng

e 

Figure 2 
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 or 

                                                                          or 

Finding a Calculator Approximations of Roots 

Use a calculator to approximate the given root up to three decimal places. 
a. √3 b. √53 c. √1005

a. √3 ≈ 1.732     5    ^     (     1     /      3     )   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

b. √53 ≈ 1.710    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    4     5   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

c. √1005 ≈2.512 
 100   ^     (     1     /     5     )   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

 5   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    5   100   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

Finding the Best Integer Approximation of a Square Root 

Without the use of a calculator, determine the best integer approximation of the given root. 
a. √68 b. √140

a. Observe that 68 lies between the following two consecutive perfect square numbers,
64 and 81. Also, 68 lies closer to 64 than to 81. Therefore, √68 ≈ √64 = 8.

b. 140 lies between the following two consecutive perfect square numbers, 121 and 144.
In addition, 140 is closer to 144 than to 121. Therefore, √140 ≈ √144 = 12.

Finding the Domain of a Radical Function 

Find the domain of each of the following functions. 
a. 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥 + 3 b. 𝑔𝑔(𝑥𝑥) = 2 − √1 − 𝑥𝑥

a. When finding domain 𝐷𝐷𝑓𝑓 of function 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥 + 3, we need to protect the radicand
2𝑥𝑥 + 3 from becoming negative. So, an 𝑥𝑥-value belongs to the domain 𝐷𝐷𝑓𝑓 if it satisfies
the condition

2𝑥𝑥 + 3 ≥ 0. 

This happens for 𝑥𝑥 ≥ −3
2
. Therefore, 𝑫𝑫𝒇𝒇 = �− 𝟑𝟑

𝟐𝟐
,∞�. 

b. To find the domain 𝐷𝐷𝑔𝑔 of function 𝑔𝑔(𝑥𝑥) = 2 − √1 − 𝑥𝑥, we solve the condition

1 − 𝑥𝑥 ≥ 0 
1 ≥ 𝑥𝑥 

Thus, 𝑫𝑫𝒈𝒈 = (−∞,𝟏𝟏]. 

Solution 

Solution 

on a graphing 
calculator 

on a graphing 
calculator 

Solution 

The domain of an 
even degree radical 
is the solution set of 

the inequality 
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 ≥ 𝟎𝟎 

The domain of an 
odd degree radical 

is ℝ. 
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Graphing Radical Functions 

For each function, find its domain, graph it, and find its range. Then, observe what 
transformation(s) of a basic root function result(s) in the obtained graph.  

a. 𝑓𝑓(𝑥𝑥) = −√𝑥𝑥 + 3 b. 𝑔𝑔(𝑥𝑥) = √𝑥𝑥3 − 2

a. The domain 𝐷𝐷𝑓𝑓 is the solution set of the inequality 𝑥𝑥 + 3 ≥ 0, which is equivalent to
𝑥𝑥 ≥ −3. Hance, 𝑫𝑫𝒇𝒇 = [−𝟑𝟑,∞).

The projection of the graph onto 
the 𝑦𝑦-axis indicates the range of 
this function, which is (−∞,𝟎𝟎]. 

The graph of  𝑓𝑓(𝑥𝑥) = −√𝑥𝑥 + 3 has the same shape as 
the graph of the basic square root function 𝑓𝑓(𝑥𝑥) = √𝑥𝑥, 
except that it is flipped over the 𝑥𝑥-axis and moved to the 
left by three units. These transformations are illustrated 
in Figure 3.  

b. The domain and range of any odd degree radical are both the set of all real numbers.
So, 𝑫𝑫𝒈𝒈 = ℝ  and  𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒈𝒈 = ℝ.

The graph of  𝑔𝑔(𝑥𝑥) = √𝑥𝑥3 − 2 has the same shape 
as the graph of the basic cube root function 𝑓𝑓(𝑥𝑥) =
√𝑥𝑥3 , except that it is moved down by two units. 
This transformation is illustrated in Figure 4.  

𝒙𝒙 𝒚𝒚 
−𝟑𝟑 0 
−𝟐𝟐 −1
𝟏𝟏 −2
𝟔𝟔 −3

𝒙𝒙 𝒚𝒚 
−𝟖𝟖 −4
−𝟏𝟏 −3
𝟎𝟎 −2
𝟏𝟏 −1
𝟖𝟖 0 

Solution 

𝒇𝒇(𝒙𝒙) = −√𝒙𝒙+ 𝟑𝟑 

𝑥𝑥 −1−3
domain 

ra
ng

e 

start from the 
endpoint of the 

domain

Figure 3 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

1 

Figure 4 

𝒈𝒈(𝒙𝒙) = √𝒙𝒙𝟑𝟑 − 𝟐𝟐 

𝑥𝑥 
−2

1 
domain 

ra
ng

e 

𝒈𝒈(𝒙𝒙) = √𝒙𝒙𝟑𝟑 − 𝟐𝟐 

𝑥𝑥 

1 

−1



Section RD1 |   127   

Radical Expressions, Functions, and Graphs 

Radicals in Application Problems 

Some application problems require evaluation of formulas that involve radicals. For 
example, the formula 𝑐𝑐 = √𝑎𝑎2 + 𝑏𝑏2  allows for finding the hypotenuse in a right angle 
triangle (see Section RD3), Heron’s formula  𝐴𝐴 = �𝑠𝑠(𝑠𝑠 − 𝑎𝑎)(𝑠𝑠 − 𝑏𝑏)(𝑠𝑠 − 𝑐𝑐)  allows for 
finding the area of any triangle given the lengths of its sides (see Section T5), the formula 

𝑇𝑇 = 2𝜋𝜋�𝑑𝑑3

𝐺𝐺𝐺𝐺
  allows for finding the time needed for a planet to make a complete orbit 

around the Sun, and so on. 

Using a Radical Formula in an Application Problem 

The time 𝑇𝑇, in seconds, needed for a pendulum to complete a full swing can be calculated 
using the formula 

𝑇𝑇 = 2𝜋𝜋� 𝐿𝐿
𝑔𝑔

, 

where 𝐿𝐿 denotes the length of the pendulum in feet, and 𝑔𝑔 is the acceleration due to gravity, 
which is about 32 ft/sec2. To the nearest hundredths of a second, find the time of a complete 
swing of an 18-inch long pendulum. 

Since 𝐿𝐿 = 18 in = 18
12

 ft = 3
2
 ft and 𝑔𝑔 = 32 ft/sec2, then 

𝑇𝑇 = 2𝜋𝜋�
3
2

32 = 2𝜋𝜋�
 3

2 ∙ 32 = 2𝜋𝜋�
 3
64 = 2𝜋𝜋 ∙

√3
8 =

𝜋𝜋√3
4 ≈ 1.36 

So, the approximate time of a complete swing of an 18-in pendulum is 𝟏𝟏.𝟑𝟑𝟑𝟑 seconds. 

RD.1  Exercises 

Evaluate each radical, if possible. 

1. √49 2. −√81 3. √−400 4. √0.09

5. √0.0016 6. � 64
225

7. √643 8. √−1253

9. √0.0083 10. −√−10003 11. � 1
0.000027

3 12. √164

13. √0.000325 14. √−17 15. √−2568 16. −� 1
64

6

Solution 
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17. Decide whether the expression  −√−𝑎𝑎  is positive, negative, 0, or not a real number, given that

a. 𝑎𝑎 < 0 b. 𝑎𝑎 > 0 c. 𝑎𝑎 = 0

18. Assuming that 𝑛𝑛 is odd, decide whether the expression  −√𝑎𝑎𝑛𝑛   is positive, negative, or 0, given that

a. 𝑎𝑎 < 0 b. 𝑎𝑎 > 0 c. 𝑎𝑎 = 0

Simplify each radical. Assume that letters can represent any real number. 

19. √152 20. �(−15)2 21. √𝑥𝑥2 22. �(−𝑥𝑥)2

23. √81𝑥𝑥2 24. �(−12𝑦𝑦)2 25. �(𝑎𝑎 + 3)2 26. �(2− 𝑥𝑥)2𝑦𝑦4

27. √𝑥𝑥2 − 4𝑥𝑥 + 4 28. �9𝑦𝑦2 + 30𝑦𝑦 + 25 29. �(−5)33 30. √𝑥𝑥33

31. √−125𝑎𝑎33 32. −�0.008(𝑥𝑥 − 1)33 33. �(5𝑥𝑥)44 34. �(−10)88

35. �(𝑦𝑦 − 3)55  36. �(𝑎𝑎 + 𝑏𝑏)20172017 37. �(2𝑎𝑎 − 𝑏𝑏)20182018  38. √𝑥𝑥186

39. �(𝑎𝑎 + 1)124  40. �(−𝑎𝑎)205 41. �(−𝑘𝑘)357  42. �𝑥𝑥4(−𝑦𝑦)84  

Find a decimal approximation for each radical. Round the answer to three decimal places. 

43. √350 44. −√0.859 45. √53 46. √35

Without the use of a calculator, give the best integer approximation of each square root. 

47. √67 48. √95 49. √115 50. √87

Questions in Exercises 60 and 61 refer to the accompanying rectangle. Answer these questions without the use 
of a calculator.  

51. Give the best integer estimation of the area of the rectangle.

52. Give the best integer estimation of the perimeter of the rectangle.

Solve each problem. Do not use any calculator. 

53. The length of a rectangular garden is √189 m and the width is √50 m. Give the best integral estimate for the
dimentions of the garden and then estimate the perimeter of the garden to the nearest meter.

54. The sides of a triangle parking lot are √65 m, √78 m, and √220 m. Give the best integral estimate for each
side and then estimate the perimeter of this parking lot to the nearest meter.

Graph each function and give its domain and range. Then, discuss the transformations of a basic root function 
needed to obtain the graph of the given function. 

55. 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 1 56. 𝑔𝑔(𝑥𝑥) = √𝑥𝑥 + 1 57. ℎ(𝑥𝑥) = −√𝑥𝑥

√96 

√27 
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58. 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 − 3 59. 𝑔𝑔(𝑥𝑥) = √𝑥𝑥 − 3 60. ℎ(𝑥𝑥) = 2 − √𝑥𝑥

61. 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 − 23 62. 𝑔𝑔(𝑥𝑥) = √𝑥𝑥3 + 2 63. ℎ(𝑥𝑥) = −√𝑥𝑥3 + 2

Graph each function and give its domain and range. 

64. 𝑓𝑓(𝑥𝑥) = 2 + √𝑥𝑥 − 1 65. 𝑔𝑔(𝑥𝑥) = 2√𝑥𝑥 66. ℎ(𝑥𝑥) = −√𝑥𝑥 + 3

67. 𝑓𝑓(𝑥𝑥) = √3𝑥𝑥 + 9 68. 𝑔𝑔(𝑥𝑥) = √3𝑥𝑥 − 6 69. ℎ(𝑥𝑥) = −√2𝑥𝑥 − 4

70. 𝑓𝑓(𝑥𝑥) = √12 − 3𝑥𝑥 71. 𝑔𝑔(𝑥𝑥) = √8 − 4𝑥𝑥 72. ℎ(𝑥𝑥) = −2√−𝑥𝑥

Graph the three given functions on the same grid and discuss the relationship between them. 

73. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 + 1;   𝑔𝑔(𝑥𝑥) = √2𝑥𝑥 + 1;    ℎ(𝑥𝑥) = √2𝑥𝑥 + 13

74. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥 + 2;   𝑔𝑔(𝑥𝑥) = √−𝑥𝑥 + 2;    ℎ(𝑥𝑥) = √−𝑥𝑥 + 23

75. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥 + 1;   𝑔𝑔(𝑥𝑥) = �1

2
𝑥𝑥 + 1;    ℎ(𝑥𝑥) = �1

2
𝑥𝑥 + 13  

Solve each problem. 

76. The distance 𝐷𝐷, in kilometers, from the point of sight to the horizon is given by
the formula  𝐷𝐷 = 4√𝐻𝐻, where 𝐻𝐻 denotes the height of the point of sight above the
sea level, in meters. To the nearest tenth of a kilometer, how far away is the
horizon for a 180 cm tall man standing on a 40-m high cliff?

77. Let T represents the threshold body weight, in kilograms, above which the risk of death of a person increases
significantly. Suppose the formula ℎ = 40√𝑇𝑇3  can be used to calculate the height ℎ, in centimeters, of a
middle age man with the threshold body weight 𝑇𝑇. To the nearest centimeter, find the height corresponding
to a threshold weight of a 100 kg man at his forties.

78. The orbital period (time needed for a planet to make a complete rotation around the Sun) is given by the

formula  𝑇𝑇 = 2𝜋𝜋� 𝑟𝑟3

𝐺𝐺𝐺𝐺
, where 𝑟𝑟 is the average distance of the planet from the 

Sun, 𝐺𝐺 is the universal gravitational constant, and 𝑀𝑀 is the mass of the Sun. 
To the nearest day, find the orbital period of Mercury, knowing that its average 
distance from the Sun is 5.791 ∙ 107 km, the mass of the Sun is 1.989 ∙ 1030 
kg, and 𝐺𝐺 = 6.67408 ∙ 10−11 m3/(kg∙s2). (Attention: Watch the units!) 

79. Suppose that the time 𝑡𝑡, in seconds, needed for an object to fall a certain distance can be found by using the

formula 𝑡𝑡 = �2𝑑𝑑
𝑔𝑔

, where 𝑑𝑑 is the distance in meters, and 𝑔𝑔 is the acceleration due to gravity. An astronaut

standing on a platform above the moon’s surface drops an object, which hits the ground 2 seconds after it
was dropped. Assume that the acceleration due to gravity on the moon is 1.625 m/s2. How high above the
surface was the object at the time it was dropped?

https://unsplash.com/photos/XIiUlMLbRpU
https://www.nasa.gov/sites/default/files/styles/full_width/public/thumbnails/image/pia12114_0.jpg?itok=q9kfpXR8
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Half of the perimeter (semiperimeter) of a triangle with sides a, b, and c is 𝒔𝒔 = 𝟏𝟏
𝟐𝟐

(𝒂𝒂 + 𝒃𝒃 + 𝒄𝒄). The area of such 

a triangle is given by the Heron’s Formula:  𝑨𝑨 = �𝒔𝒔(𝒔𝒔 − 𝒂𝒂)(𝒔𝒔 − 𝒃𝒃)(𝒔𝒔 − 𝒄𝒄) .  
In problems 89-90, find the area of a triangular piece of land with the given sides. 

80. 𝑎𝑎 = 3 m,𝑏𝑏 = 4 m, 𝑐𝑐 = 5 m

81. 𝑎𝑎 = 80 m, 𝑏𝑏 = 80 m, 𝑐𝑐 = 140 m
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RD2 Rational Exponents 

In Sections P2 and RT1, we reviewed the properties of powers with natural and integral 
exponents. All of these properties hold for real exponents as well. In this section, we give 

meaning to expressions with rational exponents, such as 𝑎𝑎
1
2, 8

1
3, or (2𝑥𝑥)0.54, and use the

rational exponent notation as an alternative way to write and simplify radical expressions.  

Rational Exponents 

Observe that √9 = 3 = 32∙
1
2 = 9

1
2. Similarly, √83 = 2 = 23∙

1
3 = 8

1
3. This suggests the 

following generalization: 

For any real number 𝑎𝑎 and a natural number 𝑛𝑛 > 1, we have 

√𝒂𝒂𝒏𝒏 = 𝒂𝒂
𝟏𝟏
𝒏𝒏.

Notice: The denominator of the rational exponent is the index of the radical. 

Caution!   If 𝑎𝑎 < 0 and 𝑛𝑛 is an even natural number, then 𝑎𝑎
1
𝑛𝑛 is not a real number. 

Converting Radical Notation to Rational Exponent Notation 

Convert each radical to a power with a rational exponent and simplify, if possible. Assume 
that all variables represent positive real numbers. 

a. √166 b. √27𝑥𝑥33 c. � 4
𝑏𝑏6

a. √166 = 16
1
6 = (24)

1
6 = 2

4
6 = 𝟐𝟐

𝟐𝟐
𝟑𝟑

Observation: Expressing numbers as powers of prime numbers often allows for further 
simplification. 

b. √27𝑥𝑥33 = (27𝑥𝑥3)
1
3 = 27

1
3 ∙ (𝑥𝑥3)

1
3 = (33)

1
3 ∙ 𝑥𝑥 = 𝟑𝟑𝟑𝟑 

Note: The above example can also be done as follows: 

√27𝑥𝑥33 = √33𝑥𝑥33 = (33𝑥𝑥3)
1
3 = 𝟑𝟑𝟑𝟑 

c. � 9
𝑏𝑏6

= � 9
𝑏𝑏6
�
1
2 = �32�

1
2

(𝑏𝑏6)
1
2

= 𝟑𝟑
𝒃𝒃𝟑𝟑

, as 𝑏𝑏 > 0. 

Solution 

distribution 
of exponents 

change into a power 
of a prime number 

3 

https://pixabay.com/en/nautilus-fossil-dinosaur-2286678/
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Observation: √𝑎𝑎4 = 𝑎𝑎
4
2 = 𝑎𝑎2.

Generally, for any real number 𝑎𝑎 ≠ 0, natural number 𝑛𝑛 > 1, and integral number 𝑚𝑚, we 
have 

√𝒂𝒂𝒎𝒎𝒏𝒏 = (𝑎𝑎𝑚𝑚)
1
𝑛𝑛 = 𝒂𝒂

𝒎𝒎
𝒏𝒏

Rational exponents are introduced in such a way that they automatically agree with the rules 
of exponents, as listed in Section RT1.  
Furthermore, the rules of exponents hold not only for rational but also for real exponents. 

Observe that following the rules of exponents and the commutativity of multiplication, we 
have 

√𝒂𝒂𝒎𝒎𝒏𝒏 = (𝑎𝑎𝑚𝑚)
1
𝑛𝑛 = �𝑎𝑎

1
𝑛𝑛�

𝑚𝑚

= �√𝒂𝒂𝒏𝒏 �
𝑚𝑚

,  

provided that √𝑎𝑎𝑛𝑛  exists. 

Converting Rational Exponent Notation to the Radical Notation 

Convert each power with a rational exponent to a radical and simplify, if possible. 

a. 5
3
4 b. (−27)

1
3 c. 3𝑥𝑥−

2
5

a. 5
3
4 = √534 = √𝟏𝟏𝟏𝟏𝟏𝟏𝟒𝟒  

b. (−27)
1
3 = √−273 = −𝟑𝟑 

c. 3𝑥𝑥−
2
5 = 3

𝑥𝑥
2
5

= 𝟑𝟑

�𝒙𝒙𝟐𝟐
𝟓𝟓

Observation: If 𝑎𝑎
𝑚𝑚
𝑛𝑛  is a real number, then 

𝒂𝒂− 𝒎𝒎𝒏𝒏 = 𝟏𝟏

 𝒂𝒂
𝒎𝒎
𝒏𝒏  

, 

provided that 𝑎𝑎 ≠ 0. 

Solution 

Caution: A negative exponent indicates 
a reciprocal not a negative number! 

Also, the exponent refers to 𝑥𝑥 only, so 3 
remains in the numerator. 

Notice that  −27
1
3 = −√273 = −3, so (−27)

1
3 = −27

1
3. 

However,  (−9)
1
2 ≠ −9

1
2,  as (−9)

1
2 is not a real

number while −9
1
2 = −√9 = −3.
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Caution!   Make sure to distinguish between a negative exponent and a negative result. 
A negative exponent leads to a reciprocal of the base. The result can be either 
positive or negative, depending on the sign of the base. For example, 

8−
1
3 = 1

8
1
3

= 1
2
,  but  (−8)−

1
3 = 1

(−8)
1
3

= 1
−2

= −1
2
 and  −8−

1
3 = − 1

8
1
3

= − 1
2
 . 

Applying Rules of Exponents When Working with Rational Exponents 

Simplify each expression. Write your answer with only positive exponents. Assume that all 
variables represent positive real numbers.  

a. 𝑎𝑎
3
4 ∙ 2𝑎𝑎−

2
3 b. 4

1
3

4
5
3

c. �𝑥𝑥
3
8 ∙ 𝑦𝑦

5
2�

4
3

a. 𝑎𝑎
3
4 ∙ 2𝑎𝑎−

2
3 = 2𝑎𝑎

3
4+�−

2
3� = 2𝑎𝑎

9
12−

8
12 = 𝟐𝟐𝒂𝒂

𝟏𝟏
𝟏𝟏𝟏𝟏 

b. 4
1
3

4
5
3

= 4
1
3−

5
3 = 4−43 = 𝟏𝟏

𝟒𝟒
𝟒𝟒
𝟑𝟑

c. �𝑥𝑥
3
8 ∙ 𝑦𝑦

5
2�

4
3 = 𝑥𝑥

3
8∙
4
3 ∙ 𝑦𝑦

5
2∙
4
3 = 𝒙𝒙

𝟏𝟏
𝟐𝟐𝒚𝒚

𝟏𝟏𝟏𝟏
𝟑𝟑  

Evaluating Powers with Rational Exponents 

Evaluate each power.  

a. 64−
1
3 b. �− 8

125
�
2
3

a. 64−
1
3 = (26)−

1
3 = 2−2 = 1

22
= 𝟏𝟏

𝟒𝟒
 

b. �− 8
125

�
2
3 = ��− 2

5
�
3
�
2
3

= �− 2
5
�
2

= 𝟒𝟒
𝟐𝟐𝟐𝟐

Observe that if 𝑚𝑚 in √𝒂𝒂𝒎𝒎𝒏𝒏  is a multiple of 𝑛𝑛, that is if 𝑚𝑚 = 𝑘𝑘𝑘𝑘 for some integer 𝑘𝑘, then 

√𝒂𝒂𝒌𝒌𝒏𝒏𝒏𝒏 = 𝑎𝑎
𝑘𝑘𝑛𝑛
𝑛𝑛 = 𝒂𝒂𝒌𝒌 

Simplifying Radical Expressions by Converting to Rational Exponents 

Simplify. Assume that all variables represent positive real numbers. Leave your answer in 
simplified single radical form.  

Solution 
 It is helpful to change the base into a 

power of a prime number, if possible. 

Solution 

2 

2 
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a. √3205 b. √𝑥𝑥 ∙ √𝑥𝑥34 c. �2√2
3

a. √3205 = (320)
1
5 = 34 = 𝟖𝟖𝟖𝟖 

b. √𝑥𝑥 ∙ √𝑥𝑥34 = 𝑥𝑥
1
2 ∙ 𝑥𝑥

3
4 = 𝑥𝑥

1∙2
2∙2 + 34 = 𝑥𝑥

5
4 = 𝑥𝑥1 ∙ 𝑥𝑥

1
4 = 𝒙𝒙√𝒙𝒙𝟒𝟒

c. �2√2
3

= �2 ∙ 2
1
2�

1
3 = �21+

1
2�

1
3 = �2

3
2�

1
3 = 2

1
2 = √𝟐𝟐 

Another solution: 

�2√2
3

= 2
1
3 ∙ �2

1
2�

1
3 = 2

1
3 ∙ 2

1
6 = 2

1∙2
3∙2+

1
6 = 2

1
2 = √𝟐𝟐 

RD.2  Exercises 

Match each expression from Column I with the equivalent expression from Column II. 

1. Column I  Column II 2. Column I  Column II 

a. 9
1
2 A. 1

3
a. (−32)

2
5 A. 2

b. 9−
1
2 B. 3 b. −27

2
3 B. 1

4

c. −9
3
2 C.  −27 c. 32

1
5 C. −8

d. −9−
1
2 D. not a real number d. 32−

2
5 D. −9

e. (−9)
1
2 E. 1

27
e. −4

3
2 E. not a real number

f. 9−
3
2 F. −1

3
f. (−4)

3
2 F. 4

Write the base as a power of a prime number to evaluate each expression, if possible. 

3. 32
1
5 4. 27

4
3 5. −49

3
2 6. 16

3
4

7. −100− 12 8. 125− 13 9. �64
81
�
3
4 10. � 8

27
�
− 23

Solution 

divide at the exponential level 

add exponents as  5
4
=1+14 

This bracket is essential! 
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Rational Exponents 

11. (−36)
1
2 12. (−64)

1
3 13. �− 1

8
�
− 13 14. (−625)− 14

Rewrite with rational exponents and simplify, if possible. Assume that all variables represent positive real 
numbers. 

15. √5 16. √63  17. √𝑥𝑥6 18. �𝑦𝑦25  

19. √64𝑥𝑥63 20. �16𝑥𝑥2𝑦𝑦33  21. �25
𝑥𝑥5

22. �16
𝑎𝑎6

4

Rewrite without rational exponents, and simplify, if possible. Assume that all variables represent positive real 
numbers. 

23. 4
5
2 24. 8

3
4 25. 𝑥𝑥

3
5 26. 𝑎𝑎

7
3

27. (−3)
2
3 28. (−2)

3
5 29. 2𝑥𝑥−

1
2 30. 𝑥𝑥

1
3𝑦𝑦−

1
2

Use the laws of exponents to simplify. Write the answers with positive exponents. Assume that all variables 
represent positive real numbers. 

31. 3
3
4 ∙ 3

1
8 32. 𝑥𝑥

2
3 ∙ 𝑥𝑥− 14 33. 2

5
8

2− 18
34. 𝑎𝑎

1
3

𝑎𝑎
2
3

35. �5
15
8 �

2
3 36. �𝑦𝑦

2
3�

− 37 37. �𝑥𝑥
3
8 ∙ 𝑦𝑦

5
2�

4
3 38. �𝑎𝑎− 23 ∙ 𝑏𝑏

5
8�
−4

39. �𝑦𝑦
− 32

𝑥𝑥−
5
3
�

1
3

40. �𝑎𝑎
− 23

𝑏𝑏−
5
6
�

3
4

41. 𝑥𝑥
2
3 ∙ 5𝑥𝑥−

2
5 42. 𝑥𝑥

2
5 ∙ �4𝑥𝑥−

4
5�

− 14

Use rational exponents to simplify. Write the answer in radical notation if appropriate. Assume that all 
variables represent positive real numbers. 

43. √𝑥𝑥26 44. �√𝑎𝑎𝑎𝑎3 �
15

45. �𝑦𝑦−186  46. �𝑥𝑥4𝑦𝑦−6

47. √816 48. √12814 49. �8𝑦𝑦63  50. �81𝑝𝑝64  

51.  �(4𝑥𝑥3𝑦𝑦)23  52. �64(𝑥𝑥 + 1)105 53. �16𝑥𝑥4𝑦𝑦24  54. √32𝑎𝑎10𝑑𝑑155

Use rational exponents to rewrite in a single radical expression in a simplified form. Assume that all variables 
represent positive real numbers. 

55. √53 ∙ √5 56. √23 ∙ √34 57. √𝑎𝑎 ∙ √3𝑎𝑎3 58. √𝑥𝑥3 ∙ √2𝑥𝑥5

59. √𝑥𝑥56 ∙ √𝑥𝑥23 60. √𝑥𝑥𝑥𝑥3 ∙ √𝑧𝑧 61. �𝑥𝑥5

√𝑥𝑥8
62. �𝑎𝑎53

√𝑎𝑎3
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63. √8𝑥𝑥3

√𝑥𝑥34 64. �√𝑎𝑎
3 65. ��𝑥𝑥𝑥𝑥34

 66. ��(3𝑥𝑥)23

67. ��√𝑥𝑥43 68. �3√3
3

69. �𝑥𝑥√𝑥𝑥
4 70. �2√𝑥𝑥

3

71. Consider two expressions: �𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛𝑛𝑛  and 𝑥𝑥 +  𝑦𝑦. Observe that for 𝑥𝑥 =  1 and 𝑦𝑦 =  0 both expressions are
equal: �𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛𝑛𝑛 = √1𝑛𝑛 + 0𝑛𝑛𝑛𝑛 = 1 = 1 + 9 = 𝑥𝑥 + 𝑦𝑦. Does this mean that �𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛𝑛𝑛 = 𝑥𝑥 +  𝑦𝑦? Justify
your answer.

Solve each problem. 

72. When counting both the black and white keys on a piano, an octave contains 12 keys. The frequencies of
consecutive keys increase by a factor of 2

1
12. For example, the frequency of 

the tone 𝐷𝐷 that is two keys above middle 𝐶𝐶 is

2
1
12 ∙ 2

1
12 = �2

1
12�

2
= 2

1
6 ≈ 1.12

times the frequency of the middle 𝐶𝐶. 
a. If tone 𝐺𝐺, which is five keys below the middle 𝐶𝐶, has a frequency of about 196 cycles per second,

estimate the frequency of the middle 𝐶𝐶 to the nearest tenths of a cycle.
b. Find the relation between frequencies of two tones that are one octave apart.

73. An animal’s heart rate is related to the animal’s weight. Suppose that the average heart rate 𝑅𝑅, 
in beats per minute, for an animal that weighs 𝑘𝑘 kilograms can be estimated by using the
function 𝑅𝑅(𝑤𝑤) =  600𝑤𝑤−12. What is the expected average heart rate of a horse that weighs 400
kilograms?

74. Suppose that the duration of a storm 𝑇𝑇, in hours, can be determined by using the function

𝑇𝑇(𝐷𝐷)  =  0.03𝐷𝐷
3
2, where 𝐷𝐷 denotes the diameter of a storm in kilometers. To the nearest

minute, what is the duration of a storm with a diameter of 20 kilometers?

one octave

C C D A 

https://www.pexels.com/photo/two-black-horse-on-field-634612/
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RD3 Simplifying Radical Expressions and the Distance Formula 

In the previous section, we simplified some radical expressions by replacing radical signs 
with rational exponents, applying the rules of exponents, and then converting the resulting 
expressions back into radical notation. In this section, we broaden the above method of 
simplifying radicals by examining products and quotients of radicals with the same indexes, 
as well as explore the possibilities of decreasing the index of a radical. 
In the second part of this section, we will apply the skills of simplifying radicals in problems 
involving the Pythagorean Theorem. In particular, we will develop the distance formula 
and apply it to calculate distances between two given points in a plane. 

Multiplication, Division, and Simplification of Radicals 

Suppose we wish to multiply radicals with the same indexes. This can be done by 
converting each radical to a rational exponent and then using properties of exponents as 
follows:   

√𝒂𝒂𝒏𝒏 ∙ √𝒃𝒃𝒏𝒏 = 𝑎𝑎
1
𝑛𝑛 ∙ 𝑏𝑏

1
𝑛𝑛 = (𝑎𝑎𝑎𝑎)

1
𝑛𝑛 = √𝒂𝒂𝒂𝒂𝒏𝒏  

This shows that the product of same index radicals is the radical of the product of their 
radicands. 

Similarly, the quotient of same index radicals is the radical of the quotient of their 
radicands, as we have 

√𝒂𝒂𝒏𝒏

√𝒃𝒃𝒏𝒏 =
𝑎𝑎
1
𝑛𝑛

𝑏𝑏
1
𝑛𝑛

= �
𝑎𝑎
𝑏𝑏
�
1
𝑛𝑛

= �
𝒂𝒂
𝒃𝒃

𝒏𝒏

So, √2 ∙ √8 = √2 ∙ 8 = √16 = 𝟒𝟒. Similarly, √16
3

√23 = �16
2

3 = √83 = 𝟐𝟐. 

Attention! There is no such rule for addition or subtraction of terms. For instance, 
√𝒂𝒂 + 𝒃𝒃 ≠ √𝒂𝒂 ± √𝒃𝒃,

and generally 
√𝒂𝒂 ± 𝒃𝒃𝒏𝒏 ≠ √𝒂𝒂𝒏𝒏 ± √𝒃𝒃𝒏𝒏 . 

Here is a counterexample:  √2𝑛𝑛 = √1 + 1𝑛𝑛 ≠ √1𝑛𝑛 + √1𝑛𝑛 = 1 + 1 = 2 

Multiplying and Dividing Radicals of the Same Indexes 

Perform the indicated operations and simplify, if possible. Assume that all variables are 
positive. 

a. √10 ∙ √15 b. √2𝑥𝑥3 �6𝑥𝑥𝑥𝑥 

c. √10𝑥𝑥
√5

d. √32𝑥𝑥34

√2𝑥𝑥4

PRODUCT 
RULE 

QUOTIENT 
RULE 
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a. √10 ∙ √15 = √10 ∙ 15 = √2 ∙ 5 ∙ 5 ∙ 3 = √5 ∙ 5 ∙ 2 ∙ 3 = √25 ∙ √6 = 𝟓𝟓√𝟔𝟔

b. √2𝑥𝑥3 �6𝑥𝑥𝑥𝑥 = �2 ∙ 2 ∙ 3𝑥𝑥4𝑦𝑦 = √4𝑥𝑥4 ∙ �3𝑦𝑦 = 𝟐𝟐𝒙𝒙𝟐𝟐�𝟑𝟑𝟑𝟑 

c. √10𝑥𝑥
√5

= �10𝑥𝑥
5

= √𝟐𝟐𝟐𝟐 

d. √32𝑥𝑥34

√2𝑥𝑥4 = �32𝑥𝑥3

2𝑥𝑥

4
= √16𝑥𝑥24 = √164 ∙ √𝑥𝑥24 = 𝟐𝟐√𝒙𝒙

Caution! Remember to indicate the index of the radical for indexes higher than two. 

The product and quotient rules are essential when simplifying radicals. 

To simplify a radical means to: 

1. Make sure that all power factors of the radicand have exponents smaller than the
index of the radical.

For example, �24𝑥𝑥8𝑦𝑦3 = √23𝑥𝑥63 ∙ �2𝑥𝑥2𝑦𝑦3 = 2𝑥𝑥2 �2𝑥𝑥2𝑦𝑦3 .

2. Leave the radicand with no fractions.

For example, �2𝑥𝑥
25

= √2𝑥𝑥
√25

= √2𝑥𝑥
5

. 

3. Rationalize any denominator. (Make sure that denominators are free from radicals,
see Section RD4.)

For example, �4
𝑥𝑥

= √4
√𝑥𝑥

= 2∙√𝑥𝑥
√𝑥𝑥∙√𝑥𝑥

= 2√𝑥𝑥
𝑥𝑥

, provided that 𝑥𝑥 > 0. 

4. Reduce the power of the radicand with the index of the radical, if possible.

For example, √𝑥𝑥24 = 𝑥𝑥
2
4 = 𝑥𝑥

1
2 = √𝑥𝑥.

Simplifying Radicals 

Simplify each radical. Assume that all variables are positive. 

a. �96𝑥𝑥7𝑦𝑦155  b. � 𝑎𝑎12

16𝑏𝑏4
4

c. �25𝑥𝑥2

8𝑥𝑥3
d. √27𝑎𝑎156

Solution 

2 

product rule prime factorization commutativity of 
multiplication 

product rule 

use commutativity of 
multiplication to isolate perfect 

square factors 

 Here the multiplication 
sign is assumed, even if it 

is not indicated. 

quotient rule

16 2 

 Recall that  

√𝑥𝑥24 = 𝑥𝑥
2
4 = 𝑥𝑥

1
2 = √𝑥𝑥. 

2 
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a. �96𝑥𝑥7𝑦𝑦155 = �25 ∙ 3𝑥𝑥7𝑦𝑦155 = 𝟐𝟐𝟐𝟐𝒚𝒚𝟑𝟑√𝟑𝟑𝒙𝒙𝟐𝟐𝟓𝟓  

Generally, to simplify √𝑥𝑥𝑎𝑎𝑑𝑑 , we perform the division 

𝑎𝑎 ÷ 𝑑𝑑 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝒒𝒒 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝒓𝒓, 

and then pull the 𝒒𝒒-th power of 𝑥𝑥 out of the radical, leaving the 𝒓𝒓-th power of 𝑥𝑥 under the 
radical. So, we obtain 

√𝒙𝒙𝒂𝒂𝒅𝒅 = 𝒙𝒙𝒒𝒒 √𝒙𝒙𝒓𝒓𝒅𝒅

b. � 𝑎𝑎12

16𝑏𝑏4
4

= √𝑎𝑎124

√24𝑏𝑏44 = 𝒂𝒂𝟑𝟑

𝟐𝟐𝟐𝟐
 

c. �25𝑥𝑥2

8𝑥𝑥3
= � 25

23𝑥𝑥
= √25

√23𝑥𝑥
= 5

2√2𝑥𝑥
∙ √2𝑥𝑥
√2𝑥𝑥

= 5√2𝑥𝑥
2∙2𝑥𝑥

= 𝟓𝟓√𝟐𝟐𝟐𝟐
𝟒𝟒𝟒𝟒

 

d. √27𝑎𝑎156 = √33𝑎𝑎156 = 𝑎𝑎2√33𝑎𝑎36 = 𝑎𝑎2 ∙ �(3𝑎𝑎)36 = 𝒂𝒂𝟐𝟐√𝟑𝟑𝟑𝟑 

Simplifying Expressions Involving Multiplication, Division, or Composition of 
Radicals with Different Indexes 

Simplify each expression. Leave your answer in simplified single radical form. Assume 
that all variables are positive. 

a. �𝑥𝑥𝑦𝑦5 ∙ �𝑥𝑥2𝑦𝑦3 b. √𝑎𝑎2𝑏𝑏34

√𝑎𝑎𝑎𝑎3  c. �𝑥𝑥2√2𝑥𝑥
3

a. �𝑥𝑥𝑦𝑦5 ∙ �𝑥𝑥2𝑦𝑦3 = 𝑥𝑥
1
2𝑦𝑦

5
2 ∙ 𝑥𝑥

2
3𝑦𝑦

1
3 = 𝑥𝑥

1∙3
2∙3 + 2∙23∙2𝑦𝑦

5∙3
2∙3 + 1∙23∙2 = 𝑥𝑥

7
6 𝑦𝑦

17
6   = (𝑥𝑥7𝑦𝑦17)

1
6

 = �𝑥𝑥7 𝑦𝑦176 = 𝒙𝒙𝒚𝒚𝟐𝟐 �𝒙𝒙𝒚𝒚𝟓𝟓
𝟔𝟔

 

b. √𝑎𝑎2𝑏𝑏34

√𝑎𝑎𝑎𝑎3 = 𝑎𝑎
2
4 𝑏𝑏

3
4

𝑎𝑎
1
3𝑏𝑏

1
3

= 𝑎𝑎
1∙3
2∙3 − 1∙23∙2𝑏𝑏

3∙3
4∙3 − 1∙43∙4 = 𝑎𝑎

1∙2
6∙2 𝑏𝑏

5
12 = (𝑎𝑎2 𝑏𝑏5 )

1
12 = √𝒂𝒂𝟐𝟐 𝒃𝒃𝟓𝟓𝟏𝟏𝟏𝟏  

c. �𝑥𝑥2 √2𝑥𝑥
3

= 𝑥𝑥
2
3 ∙ �(2𝑥𝑥)

1
2�

1
3 = 𝑥𝑥

2
3 ∙ 2

1
6 ∙ 𝑥𝑥

1
6 = 𝑥𝑥

2∙2
3∙2 + 16 ∙ 2

1
6 = 2

1
6𝑥𝑥

5
6 = (2𝑥𝑥5)

1
6 = √𝟐𝟐𝒙𝒙𝟓𝟓𝟔𝟔  

Solution 

 �𝑥𝑥75 = 𝑥𝑥�𝑥𝑥25  

Solution 

 �𝑦𝑦155 = 𝑦𝑦3 

1 

2 

2 

   
If radicals are of 
different indexes, 
convert them to 

exponential form. 

 Bring the exponents to the LCD in order 
to leave the answer as a single radical. 
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Pythagorean Theorem and Distance Formula 

One of the most famous theorems in mathematics is the Pythagorean Theorem. 

Pythagorean Suppose angle 𝐶𝐶 in a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 is a 90° angle. 
Theorem Then the sum of the squares of the lengths of the two legs, 𝒂𝒂 and 𝒃𝒃, equals to the square 

of the length of the hypotenuse 𝒄𝒄:  

𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 = 𝒄𝒄𝟐𝟐 

Using The Pythagorean Equation 

For the first two triangles, find the exact length 𝑥𝑥 of the unknown side. For triangle (c), 
express length 𝑥𝑥 in terms of the unknown 𝑛𝑛. 

a. b. c. 

a. The length of the hypotenuse of the given right triangle is equal to 𝑥𝑥. So, the
Pythagorean equation takes the form

𝑥𝑥2 = 42 + 92. 

To solve it for 𝑥𝑥, we take a square root of each side of the equation. This gives us 

�𝑥𝑥2 = �42 + 92 
𝑥𝑥 = √16 + 81 
𝑥𝑥 = √𝟗𝟗𝟗𝟗 

b. Since 10 is the length of the hypotenuse, we form the Pythagorean equation

102 = 𝑥𝑥2 + √24
2

.

To solve it for 𝑥𝑥, we isolate the 𝑥𝑥2 term and then apply the square root operator to both 
sides of the equation. So, we have 

102 − √24
2

= 𝑥𝑥2
100 − 24 = 𝑥𝑥2

𝑥𝑥2 = 76 

𝑥𝑥 = √76 = √4 ∙ 19 = 𝟐𝟐√𝟏𝟏𝟏𝟏 

c. The length of the hypotenuse is √𝑛𝑛, so we form the Pythagorean equation as below.

�√𝑛𝑛�
2

= 12 + 𝑥𝑥2

Solution 

Caution:  Generally, 
�𝑥𝑥2 = |𝑥𝑥| 

However, the length of a 
side of a triangle is 

positive. So, we can write 
�𝑥𝑥2 = 𝑥𝑥 

𝐴𝐴 𝐶𝐶 

𝐵𝐵 

𝑎𝑎 

𝑏𝑏 

𝑐𝑐 

4 

9 

𝒙𝒙 √24

10 

𝒙𝒙 
1 

√𝑛𝑛
𝒙𝒙 

 Customarily, we 
simplify each 

root, if possible. 
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To solve this equation for 𝑥𝑥, we isolate the 𝑥𝑥2 term and then apply the square root 
operator to both sides of the equation. So, we obtain 

𝑛𝑛 = 1 + 𝑥𝑥2 
𝑛𝑛 − 1 = 𝑥𝑥2 

𝑥𝑥 = √𝒏𝒏 − 𝟏𝟏 

Note:  Since the hypotenuse of length √𝑛𝑛 must be longer than the leg of length 1, 𝑛𝑛 > 1. 
This means that 𝑛𝑛 − 1 > 0, and therefore √𝑛𝑛 − 1 is a positive real number. 

The Pythagorean Theorem allows us to find the distance 
between any two given points in a plane. 
Suppose 𝐴𝐴(𝑥𝑥1,𝑦𝑦1) and 𝐵𝐵(𝑥𝑥2,𝑦𝑦2) are two points in a 
coordinate plane. Then |𝑥𝑥2 − 𝑥𝑥1| represents the horizontal 
distance between 𝐴𝐴 and 𝐵𝐵 and |𝑦𝑦2 − 𝑦𝑦1| represents the 
vertical distance between 𝐴𝐴 and 𝐵𝐵, as shown in Figure 1. 
Notice that by applying the absolute value operator to each 
difference of the coordinates we guarantee that the 
resulting horizontal and vertical distance is indeed a 
nonnegative number.  
Applying the Pythagorean Theorem to the right triangle shown in Figure 1, we form the 
equation 

𝑑𝑑2 = |𝑥𝑥2 − 𝑥𝑥1|2 + |𝑦𝑦2 − 𝑦𝑦1|2, 

where d is the distance between 𝐴𝐴 and 𝐵𝐵. 

Notice that |𝑥𝑥2 − 𝑥𝑥1|2 = (𝑥𝑥2 − 𝑥𝑥1)2 as a perfect square automatically makes the expression 
nonnegative. Similarly, |𝑦𝑦2 − 𝑦𝑦1|2 = (𝑦𝑦2 − 𝑦𝑦1)2. So, the Pythagorean equation takes the 
form 

𝑑𝑑2 = (𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 

After solving this equation for 𝑑𝑑, we obtain the distance formula: 

𝒅𝒅 = �(𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟏𝟏)𝟐𝟐 + (𝒚𝒚𝟐𝟐 − 𝒚𝒚𝟏𝟏)𝟐𝟐 

Note:  Observe that due to squaring the difference of the corresponding coordinates, the 
distance between two points is the same regardless of which point is chosen as first, 
(𝑥𝑥1, 𝑦𝑦1), and second, (𝑥𝑥2,𝑦𝑦2). 

Finding the Distance Between Two Points 

Find the exact distance between the points (−2,4) and (5, 3). 

Let (−2,4) = (𝑥𝑥1, 𝑦𝑦1) and (5, 3) = (𝑥𝑥2, 𝑦𝑦2). To find the distance 𝑑𝑑 between the two points, 
we follow the distance formula: 

Solution 

1 

√𝑛𝑛
√𝑛𝑛 − 1

𝐴𝐴(𝑥𝑥1,𝑦𝑦1) 

𝐵𝐵(𝑥𝑥2,𝑦𝑦2) 

𝑥𝑥2 𝑥𝑥1 

𝑦𝑦2

𝑦𝑦1
|𝑥𝑥2 − 𝑥𝑥1| 

| 𝑦𝑦
2
−
𝑦𝑦 1

|  

𝑑𝑑 

𝑥𝑥

𝑦𝑦

Figure 1 
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𝑑𝑑 = ��5 − (−2)�
2

+ (3− 4)2 = �72 + (−1)2 = √49 + 1 = √50 = 𝟓𝟓√𝟐𝟐 

So, the points (−2,4) and (5, 3) are 5√2 units apart. 

RD.3  Exercises 

Multiply and simplify, if possible. Assume that all variables are positive. 

1. √5 ∙ √5 2. √18 ∙ √2 3. √6 ∙ √3 4. √15 ∙ √6

5. √45 ∙ √60 6. √24 ∙ √75 7. √3𝑥𝑥3 ∙ √6𝑥𝑥5 8. �5𝑦𝑦7 ∙ √15𝑎𝑎3

9. �12𝑥𝑥3𝑦𝑦 �8𝑥𝑥4𝑦𝑦2 10. √30𝑎𝑎3𝑏𝑏4 √18𝑎𝑎2𝑏𝑏5 11. √4𝑥𝑥23  √2𝑥𝑥43 12. √20𝑎𝑎34  √4𝑎𝑎54

Divide and simplify, if possible. Assume that all variables are positive. 

13. √90
√5

14. √48
√6

15. √42𝑎𝑎
√7𝑎𝑎

16. √30𝑥𝑥3

√10𝑥𝑥

17. √52𝑎𝑎𝑏𝑏3

√13𝑎𝑎
18. �56𝑥𝑥𝑦𝑦3

√8𝑥𝑥
19. �128𝑥𝑥2𝑦𝑦

2√2
20. √48𝑎𝑎3𝑏𝑏

2√3

21. √804

√54 22. √1083

√43 23. 
�96𝑎𝑎5𝑏𝑏23

�12𝑎𝑎2𝑏𝑏
3 24. �48𝑥𝑥9𝑦𝑦134

�3𝑥𝑥𝑦𝑦54

Simplify each expression. Assume that all variables are positive. 

25. �144𝑥𝑥4𝑦𝑦9 26. −√81𝑚𝑚8𝑛𝑛5 27. √−125𝑎𝑎6𝑏𝑏9𝑐𝑐123 28. �50𝑥𝑥3𝑦𝑦4

29. � 1
16
𝑚𝑚8𝑛𝑛204  30. −�− 1

27
𝑥𝑥2𝑦𝑦73  31. √7𝑎𝑎7𝑏𝑏6 32. �75𝑝𝑝3𝑞𝑞4

33. �64𝑥𝑥12𝑦𝑦155  34. �𝑝𝑝14𝑞𝑞7𝑟𝑟235  35. −√162𝑎𝑎15𝑏𝑏104 36. −�32𝑥𝑥5𝑦𝑦104

37. �16
49

38. � 27
125

3
39. �121

𝑦𝑦2
40. �64

𝑥𝑥4

41. �81𝑎𝑎5

64

3
42. �36𝑥𝑥5

𝑦𝑦6
43. �16𝑥𝑥12

𝑦𝑦4𝑧𝑧16
4

44. �32𝑦𝑦8

𝑥𝑥10
5

45. √364 46. √276 47. − √𝑥𝑥2510 48. √𝑥𝑥4412

49. −� 1
𝑥𝑥3𝑦𝑦 50. �64𝑥𝑥15

𝑦𝑦4𝑧𝑧5
3

51. � 𝑥𝑥13

𝑦𝑦6𝑧𝑧12
6

52. �𝑝𝑝9𝑞𝑞24

𝑟𝑟18
6
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53. To simplify the radical √𝑥𝑥3 + 𝑥𝑥2, a student wrote √𝑥𝑥3 + 𝑥𝑥2 = 𝑥𝑥√𝑥𝑥 + 𝑥𝑥 = 𝑥𝑥�√𝑥𝑥 + 1�. Is this correct? Justify
your answer.

Perform operations. Leave the answer in simplified single radical form. Assume that all variables are positive. 

54. √3 ∙ √43 55. √𝑥𝑥 ∙ √𝑥𝑥5 56. √𝑥𝑥23 ∙ √𝑥𝑥4 57. √43 ∙ √85  

58. √𝑎𝑎23

√𝑎𝑎
59. √𝑥𝑥

√𝑥𝑥4 60. �𝑥𝑥2𝑦𝑦34

√𝑥𝑥𝑥𝑥3 61. √16𝑎𝑎25

√2𝑎𝑎23  

62. �2√𝑥𝑥
3 63. �𝑥𝑥 √2𝑥𝑥23 64. �3 √934

65. �𝑥𝑥2 √𝑥𝑥343
 

For each right triangle, find length 𝑥𝑥. Simplify the answer if possible. In problems 73 and 74, expect the length x 
to be an expression in terms of n. 

66. 67. 68. 

69.  70. 71. 

Find the exact distance between each pair of points. 

72. (8,13) and (2,5) 73. (−8,3) and (−4,1) 74. (−6,5) and (3,−4)

75. �5
7

, 1
14
� and �1

7
, 11
14
� 76. �0,√6� and �√7, 0� 77. �√2,√6� and �2√2,−4√6�

78. �−√5, 6√3� and �√5,√3� 79. (0,0) and (𝑝𝑝, 𝑞𝑞) 80. (𝑥𝑥 + ℎ,𝑦𝑦 + ℎ) and (𝑥𝑥, 𝑦𝑦)
(assume that ℎ > 0)

Solve each problem. 

81. To find the diagonal of a box, we can use the formula 𝐷𝐷 = √𝑊𝑊2 + 𝐿𝐿2 + 𝐻𝐻2, where
𝑊𝑊, 𝐿𝐿, and 𝐻𝐻 are, respectively, the width, length, and height of the box. Find the
diagonal 𝐷𝐷 of a storage container that is 6.1 meters long, 2.4 meters wide, and 2.6
meters high. Round your answer to the nearest centimeter.

82. The screen of a 32-inch television is 27.9-inch wide. To the nearest tenth of an inch,
what is the measure of its height? (Note: TVs are measured diagonally, so a 32-inch
television means that its screen measures diagonally 32 inches.)

83. Suppose 𝐴𝐴 = (0,−3) and 𝑃𝑃 is a point on the 𝑥𝑥-axis of a Cartesian coordinate system. Find all possible
coordinates of 𝑃𝑃 if 𝐴𝐴𝐴𝐴 = 5.

5 

7 

𝒙𝒙 

3 

𝑛𝑛 
𝒙𝒙 

√2

2√2 

𝒙𝒙 

2√6 

3√8 𝒙𝒙 

2 

√𝑛𝑛 + 4
𝒙𝒙 

𝐿𝐿 
𝑊𝑊 

𝐻𝐻 
𝐷𝐷 
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84. Suppose 𝐵𝐵 = (1, 0) and 𝑃𝑃 is a point on the 𝑦𝑦-axis of a Cartesian coordinate system. Find all possible
coordinates of 𝑃𝑃 if 𝐵𝐵𝐵𝐵 = 2.

85. Due to high temperatures, a 3-km bridge may expand
up to 0.6 meters in length. If the maximum bulge
occurs at the middle of the bridge, find the height of
such a bulge. The answer may be surprising. To avoid
such situations, engineers design bridges with
expansion spaces.

bulge 
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Operations on Radical Expressions; Rationalization of Denominators 

RD4 Operations on Radical Expressions; Rationalization of 
Denominators 

Unlike operations on fractions or decimals, sums and differences of many radicals cannot 
be simplified. For instance, we cannot combine √2 and √3, nor simplify expressions such 
as √23 − 1. These types of radical expressions can only be approximated with the aid of a 
calculator.  
However, some radical expressions can be combined (added or subtracted) and simplified. 
For example, the sum of 2√2 and √2 is 3√2, similarly as 2𝑥𝑥 + 𝑥𝑥 = 3𝑥𝑥.   
In this section, first, we discuss the addition and subtraction of radical expressions. Then, 
we show how to work with radical expressions involving a combination of the four basic 
operations. Finally, we examine how to rationalize denominators of radical expressions. 

Addition and Subtraction of Radical Expressions 

Recall that to perform addition or subtraction of two variable terms we need these terms to 
be like. This is because the addition and subtraction of terms are performed by factoring 
out the variable “like” part of the terms as a common factor. For example, 

𝑥𝑥2 + 3𝑥𝑥2 = (1 + 3)𝑥𝑥2 = 4𝑥𝑥2 

The same strategy works for addition and subtraction of the same types of radicals or 
radical terms (terms containing radicals).  

Definition 4.1 Radical terms containing radicals with the same index and the same radicands are referred 
to as like radicals or like radical terms. 
For example, 

√5𝑥𝑥  and  2√5𝑥𝑥  are like (the indexes and the radicands are the same)
while 

5√2  and  2√5  are not like (the radicands are different) 
and 

√𝑥𝑥  and  √𝑥𝑥3   are not like radicals (the indexes are different).

To add or subtract like radical expressions we factor out the common radical and any 
other common factor, if applicable. For example, 

4√2 + 3√2 = (4 + 3)√2 = 7√2, 

and 
4𝑥𝑥𝑥𝑥√2 − 3𝑥𝑥√2 = (4𝑦𝑦 − 3)𝑥𝑥√2. 

Caution! Unlike radical expressions cannot be combined. For example, we are unable to 
perform the addition √6 + √3. Such a sum can only be approximated using a calculator. 

Notice that unlike radicals may become like if we simplify them first. For example, √200 
and √50 are not like, but √200 = 10√2 and √50 = 5√2. Since 10√2 and 5√2 are like 
radical terms, they can be combined. So, we can perform, for example, the addition: 

√200 + √50 = 10√2 + 5√2 = 15√2

2√2 

√2 √2 

2 2 

1 √2 
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Adding and Subtracting Radical Expressions 

Perform operations and simplify, if possible. Assume that all variables represent positive 
real numbers.  

a. 5√3 − 8√3 b. 3√25 − 7𝑥𝑥√25 + 6√25

c. 7√45 + √80 − √12 d. 3�𝑦𝑦53 − 5𝑦𝑦�𝑦𝑦23 + �32𝑦𝑦75  

e. � 𝑥𝑥
16

+ 2�𝑥𝑥3

9
f. √25𝑥𝑥2 − 25 − √9𝑥𝑥2 − 9

a. To subtract like radicals, we combine their coefficients via factoring.

5√3 − 8√3 = (5 − 8)√3 = −𝟑𝟑√𝟑𝟑

b. 3√25 − 7𝑥𝑥√25 + 6√25 = (3− 7𝑥𝑥 + 6)√25 = (𝟗𝟗 − 𝟕𝟕𝟕𝟕)√𝟐𝟐𝟓𝟓  

Note: Even if not all coefficients are like, factoring the common radical is a useful 
strategy that allows us to combine like radical expressions. 

c. The expression 7√45 + √80 − √12 consists of unlike radical terms, so they cannot
be combined in this form. However, if we simplify the radicals, some of them may
become like and then become possible to combine.

7√45 + √80 − √12 = 7√9 ∙ 5 + √16 ∙ 5 − √4 ∙ 3 = 7 ∙ 3√5 + 4√5− 2√3

= 21√5 + 4√5 − 2√3 = 𝟐𝟐𝟐𝟐√𝟓𝟓 − 𝟐𝟐√𝟑𝟑

d. As in the previous example, we simplify each radical expression before attempting to
combine them.

3�𝑦𝑦53 − 5𝑦𝑦�𝑦𝑦23 + �32𝑦𝑦75 = 3𝑦𝑦�𝑦𝑦23 − 5𝑦𝑦�𝑦𝑦23 + 2𝑦𝑦�𝑦𝑦25  

= (3𝑦𝑦 − 5𝑦𝑦)�𝑦𝑦23 + 2𝑦𝑦�𝑦𝑦25 = −𝟐𝟐𝟐𝟐�𝒚𝒚𝟐𝟐𝟑𝟑 + 𝟐𝟐𝟐𝟐�𝒚𝒚𝟐𝟐𝟓𝟓   

Note:  The last two radical expressions cannot be combined because of different indexes. 

e. To perform the addition � 𝑥𝑥
16

+ 2�𝑥𝑥3

9
, we may simplify each radical expression first.

Then, we add the expressions by bringing them to the least common denominator and
finally, factor the common radical, as shown below.

� 𝑥𝑥
16

+ 2�𝑥𝑥3

9
= √𝑥𝑥

√16
+ 2 √𝑥𝑥3

√9
= √𝑥𝑥

4
+ 2 √𝑥𝑥3

3
= 3√𝑥𝑥+2∙4∙𝑥𝑥√𝑥𝑥

12
= �𝟑𝟑+𝟖𝟖𝟖𝟖

𝟏𝟏𝟏𝟏
�√𝒙𝒙 

Solution 

Remember to write the 
index with each radical.

The brackets are 
essential here. 
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f. In an attempt to simplify radicals in the expression √25𝑥𝑥2 − 25 − √9𝑥𝑥2 − 9, we
factor each radicand first. So, we obtain

�25𝑥𝑥2 − 25 −�9𝑥𝑥2 − 9 = �25(𝑥𝑥2 − 1) − �9(𝑥𝑥2 − 1) = 5�𝑥𝑥2 − 1− 3�𝑥𝑥2 − 1

= 𝟐𝟐�𝒙𝒙𝟐𝟐 − 𝟏𝟏

Caution!  The root of a sum does not equal the sum of the roots. For example, 

√5 = √𝟏𝟏 + 𝟒𝟒 ≠ √𝟏𝟏 + √𝟒𝟒 = 1 + 2 = 3

So, radicals such as √25𝑥𝑥2 − 25 or √9𝑥𝑥2 − 9 can be simplified only via factoring a 
perfect square out of their radicals while √𝑥𝑥2 − 1 cannot be simplified any further. 

Multiplication of Radical Expressions with More than One Term 

Similarly as in the case of multiplication of polynomials, multiplication of radical 
expressions where at least one factor consists of more than one term is performed by 
applying the distributive property. 

Multiplying Radical Expressions with More than One Term 

Multiply and then simplify each product. Assume that all variables represent positive real 
numbers. 

a. 5√2�3√2𝑥𝑥 − √6� b. √𝑥𝑥3 �√3𝑥𝑥23 − √81𝑥𝑥23 �

c. �2√3 + √2��√3− 3√2� d. �𝑥𝑥√𝑥𝑥 − �𝑦𝑦��𝑥𝑥√𝑥𝑥 + �𝑦𝑦�

e. �3√2 + 2√𝑥𝑥3 ��3√2− 2√𝑥𝑥3 � f. ��5𝑦𝑦 + 𝑦𝑦�𝑦𝑦�
2

a. 
5√2�3√2𝑥𝑥 − √6� = 15√4𝑥𝑥 − 5√2 ∙ 2 ∙ 3 = 15 ∙ 2√𝑥𝑥 − 5 ∙ 2√3 = 𝟑𝟑𝟑𝟑√𝒙𝒙 − 𝟏𝟏𝟏𝟏√𝟑𝟑 

b. 

√𝑥𝑥3 �√3𝑥𝑥23 − √81𝑥𝑥23 � = √3𝑥𝑥2 ∙ 𝑥𝑥3 − √81𝑥𝑥2 ∙ 𝑥𝑥3 = 𝑥𝑥√33 − 3𝑥𝑥√33 = −𝟐𝟐𝟐𝟐√𝟑𝟑𝟑𝟑  

Solution 

 These are unlike terms. So, 
they cannot be combined.  5√2 ∙ 3√2𝑥𝑥 = 5 ∙ 3√2 ∙ 2𝑥𝑥 

distribution 

simplification 

combining 
like terms 
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c. To multiply two binomial expressions involving radicals we may use the FOIL
method. Recall that the acronym FOIL refers to multiplying the First, Outer, Inner,
and Last terms of the binomials.

F            O            I           L
�2√3 + √2��√3− 3√2� = 2 ∙ 3 − 6√3 ∙ 2 + √2 ∙ 3 − 3 ∙ 2 = 6 − 6√6 + √6 − 6

= −𝟓𝟓√𝟔𝟔

d. To multiply two conjugate binomial expressions we follow the difference of squares
formula, (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2. So, we obtain

�𝑥𝑥√𝑥𝑥 − �𝑦𝑦��𝑥𝑥√𝑥𝑥 + �𝑦𝑦� = �𝑥𝑥√𝑥𝑥�
2
− ��𝑦𝑦�

2
= 𝑥𝑥2 ∙ 𝑥𝑥 − 𝑦𝑦 = 𝒙𝒙𝟑𝟑 − 𝒚𝒚

e. Similarly as in the previous example, we follow the difference of squares formula.

�3√2 + 2√𝑥𝑥3 ��3√2− 2√𝑥𝑥3 � = �3√2�
2
− �2√𝑥𝑥3 �

2
= 9 ∙ 2− 4�𝑥𝑥23 = 𝟏𝟏𝟏𝟏 − 𝟒𝟒�𝒙𝒙𝟐𝟐𝟑𝟑

f. To multiply two identical binomial expressions we follow the perfect square formula,
(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2. So, we obtain

��5𝑦𝑦 + 𝑦𝑦�𝑦𝑦�
2

= ��5𝑦𝑦�
2

+ 2��5𝑦𝑦��𝑦𝑦�𝑦𝑦� + �𝑦𝑦�𝑦𝑦�
2

= 5𝑦𝑦 + 2𝑦𝑦�5𝑦𝑦2 + 𝑦𝑦2𝑦𝑦

= 𝟓𝟓𝟓𝟓 + 𝟐𝟐√𝟓𝟓 𝒚𝒚𝟐𝟐 + 𝒚𝒚𝟑𝟑

Rationalization of Denominators 

As mentioned in Section RD3, the process of simplifying radicals involves rationalization 
of any emerging denominators. Similarly, a radical expression is not in its simplest form 
unless all its denominators are rational. This agreement originated before the days of 
calculators when computation was a tedious process performed by hand. Nevertheless, even 
in present time, the agreement of keeping denominators rational does not lose its validity, 
as we often work with variable radical expressions. For example, the expressions 2

√2
 and 

√2 are equivalent, as
2
√2

=
2
√2

∙
√2
√2

=
2√2

2
= √2 

Similarly, 𝑥𝑥
√𝑥𝑥

 is equivalent to √𝑥𝑥, as 

𝑥𝑥
√𝑥𝑥

=
𝑥𝑥
√𝑥𝑥

∙
√𝑥𝑥
√𝑥𝑥

=
𝑥𝑥√𝑥𝑥
𝑥𝑥

= √𝑥𝑥 

While one can argue that evaluating 2
√2

 is as easy as evaluating √2 when using a calculator, 

the expression √𝑥𝑥 is definitely easier to use than  𝑥𝑥
√𝑥𝑥

 in any further algebraic manipulations. 

square each factor 

 �√𝑥𝑥�
2

= 𝑥𝑥 
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Definition 4.2 The process of removing radicals from a denominator so that the denominator contains only 
rational numbers is called rationalization of the denominator. 

Rationalization of denominators is carried out by multiplying the given fraction by a factor 
of 1, as shown in the next two examples. 

Rationalizing Monomial Denominators 

Simplify, if possible. Leave the answer with a rational denominator. Assume that all 
variables represent positive real numbers.  

a. −1
3√5

b. 5
√32𝑥𝑥3  c. �81𝑥𝑥5

𝑦𝑦
4

a. Notice that √5 can be converted to a rational number by multiplying it by another √5.
Since the denominator of a fraction cannot be changed without changing the numerator
in the same way, we multiply both, the numerator and denominator of −1

3√5
 by √5. So,

we obtain
−1

3√5
∙
√5
√5

 =
−√5
3 ∙ 5

= −
√𝟓𝟓
𝟏𝟏𝟏𝟏

b. First, we may want to simplify the radical in the denominator. So, we have

5
√32𝑥𝑥3 =

5
√8 ∙ 4𝑥𝑥3 =

5
2√4𝑥𝑥3

Then, notice that since √4𝑥𝑥3 = √22𝑥𝑥3 , it is enough to multiply it by √2𝑥𝑥23  to nihilate 
the radical. This is because √22𝑥𝑥3 ∙ √2𝑥𝑥23 = √23𝑥𝑥33 = 2𝑥𝑥. So, we proceed

5
√32𝑥𝑥3 =

5
2√4𝑥𝑥3 ∙

√2𝑥𝑥23

√2𝑥𝑥23  =
5√2𝑥𝑥23

2 ∙ 2𝑥𝑥
=
𝟓𝟓√𝟐𝟐𝒙𝒙𝟐𝟐𝟑𝟑

𝟒𝟒𝟒𝟒

Caution: A common mistake in the rationalization of √4𝑥𝑥3  is the attempt to multiply it by 
a copy of √4𝑥𝑥3 . However, √4𝑥𝑥3 ∙ √4𝑥𝑥3 = √16𝑥𝑥23 = 2√3𝑥𝑥23  is still not rational. This is 
because we work with a cubic root, not a square root. So, to rationalize √4𝑥𝑥3  we must look 
for ‘filling’ the radicand to a perfect cube. This is achieved by multiplying 4𝑥𝑥 by 2𝑥𝑥2 to 
get 8𝑥𝑥3. 

c. To simplify �81𝑥𝑥5

𝑦𝑦
4 , first, we apply the quotient rule for radicals, then simplify the 

radical in the numerator, and finally, rationalize the denominator. So, we have 

�
81𝑥𝑥5

𝑦𝑦
4

=
√81𝑥𝑥54

�𝑦𝑦4 =
3𝑥𝑥√𝑥𝑥4

�𝑦𝑦4 ∙
�𝑦𝑦34

�𝑦𝑦34 =
𝟑𝟑𝟑𝟑�𝒙𝒙𝒚𝒚𝟑𝟑𝟒𝟒

𝒚𝒚

Solution 
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To rationalize a binomial containing square roots, such as 2− √𝑥𝑥 or √2 − √3, we need to 
find a way to square each term separately. This can be achieved through multiplying by a 
conjugate binomial, in order to benefit from the difference of squares formula. In particular, 
we can rationalize denominators in expressions below as follows:  

1
2 − √𝑥𝑥

=
1

�2 − √𝑥𝑥�
∙
�2 + √𝑥𝑥�
�2 + √𝑥𝑥�

=
𝟐𝟐 + √𝒙𝒙
𝟒𝟒 − 𝒙𝒙

or 
√2

√2 + √3
=

√2
�√2 + √3�

∙
�√2− √3�
�√2− √3�

=
2− √6
2 − 3 =

2 − √6
−1 = √𝟔𝟔 − 𝟐𝟐 

Rationalizing Binomial Denominators 

Rationalize each denominator and simplify, if possible. Assume that all variables represent 
positive real numbers. 

a. 1−√3
1+√3

b. √𝑥𝑥𝑥𝑥
2√𝑥𝑥−√𝑦𝑦

a. 1−√3
1+√3

∙ �1−√3�
�1−√3�

= 1−2√3+3
1−3

= 4−2√3
−2

= −2�−2+√3�
−2

= √𝟑𝟑 − 𝟐𝟐 

b. √𝑥𝑥𝑥𝑥
2√𝑥𝑥−√𝑦𝑦

∙ �2√𝑥𝑥+√𝑦𝑦�
�2√𝑥𝑥+√𝑦𝑦�

= 2𝑥𝑥√𝑦𝑦+𝑦𝑦√𝑥𝑥
4𝑥𝑥−𝑦𝑦

 

Some of the challenges in algebraic manipulations involve simplifying quotients with 

radical expressions, such as  4−2√3
−2

, which appeared in the solution to Example 4a. The key 

concept that allows us to simplify such expressions is factoring, as only common factors 
can be reduced. 

Writing Quotients with Radicals in Lowest Terms 

Write each quotient in lowest terms. 

a. 15−6√5
6

b. 3𝑥𝑥+√8𝑥𝑥2

6𝑥𝑥

Solution 

 Apply the difference of 
squares formula: 

(𝒂𝒂 − 𝒃𝒃)(𝒂𝒂+ 𝒃𝒃) = 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 

 

factor 
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a. To reduce this quotient to the lowest terms we may factor the numerator first,

15 − 6√5
6

=
3�5 − 2√5�

6
=
𝟓𝟓 − 𝟐𝟐√𝟓𝟓

𝟐𝟐
, 

or alternatively, rewrite the quotient into two fractions and then simplify, 

15 − 6√5
6

=
15
6
−

6√5
6

=
𝟓𝟓
𝟐𝟐
− √𝟓𝟓.

Caution: Here are the common errors to avoid: 
15−6√5

6
= 15 − √5 - only common factors can be reduced! 

15−6√5
6

= 9√5
6

= 3√5
2

 - subtraction is performed after multiplication!

b. To reduce this quotient to the lowest terms, we simplify the radical and factor the
numerator first. So,

3𝑥𝑥 + √8𝑥𝑥2

6𝑥𝑥 =
3𝑥𝑥 + 2𝑥𝑥√2

6𝑥𝑥 =
𝑥𝑥�3 + 2√2�

6𝑥𝑥
=
𝟑𝟑 + 𝟐𝟐√𝟐𝟐

𝟔𝟔

RD.4  Exercises 

1. A student claims that  24 − 4√𝑥𝑥 = 20√𝑥𝑥  because for 𝑥𝑥 = 1 both sides of the equation equal to 20.  Is this a
valid justification? Explain.

2. Generally, √𝑎𝑎 + 𝑏𝑏 ≠ √𝑎𝑎 + √𝑏𝑏. For example, if 𝑎𝑎 = 𝑏𝑏 = 1, we have √1 + 1 = √2 ≠ 2 = 1 + 1 = √1 + √1.
Can you think of a situation when √𝑎𝑎 + 𝑏𝑏 = √𝑎𝑎 + √𝑏𝑏 ?

Perform operations and simplify, if possible. Assume that all variables represent positive real numbers. 

3. 2√3 + 5√3 4. 6√𝑥𝑥3 − 4√𝑥𝑥3 5. 9𝑦𝑦√3𝑥𝑥 + 4𝑦𝑦√3𝑥𝑥

6. 12𝑎𝑎√5𝑏𝑏 − 4𝑎𝑎√5𝑏𝑏 7. 5√32 − 3√8 + 2√3 8. −2√48 + 4√75 − √5

9. √163 + 3√543 10. √324 − 3√24 11. √5𝑎𝑎 + 2√45𝑎𝑎3

12. √24𝑥𝑥3 − √3𝑥𝑥43 13. 4√𝑥𝑥3 − 2√9𝑥𝑥 14. 7√27𝑥𝑥3 + √3𝑥𝑥

15. 6√18𝑥𝑥 − √32𝑥𝑥 + 2√50𝑥𝑥 16. 2√128𝑎𝑎 − √98𝑎𝑎 + 2√72𝑎𝑎

Solution 

2 

3 

 
This expression 

cannot be simplified 
any further. 

2 
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17. √6𝑥𝑥43 + √48𝑥𝑥3 − √6𝑥𝑥3 18. 9�27𝑦𝑦2 − 14�108𝑦𝑦2 + 2�48𝑦𝑦2

19. 3√98𝑛𝑛2 − 5√32𝑛𝑛2 − 3√18𝑛𝑛2 20. −4𝑦𝑦�𝑥𝑥𝑦𝑦3 + 7𝑥𝑥�𝑥𝑥3𝑦𝑦

21. 6𝑎𝑎√𝑎𝑎𝑏𝑏5 − 9𝑏𝑏√𝑎𝑎3𝑏𝑏 22. �−125𝑝𝑝93 + 𝑝𝑝�−8𝑝𝑝63  

23. 3�𝑥𝑥5𝑦𝑦4 + 2𝑥𝑥�𝑥𝑥𝑥𝑥4  24. √125𝑎𝑎5 − 2√125𝑎𝑎43 25. 𝑥𝑥√16𝑥𝑥3 + √2 − √2𝑥𝑥43

26. √9𝑎𝑎 − 9 + √𝑎𝑎 − 1 27. √4𝑥𝑥 + 12 − √𝑥𝑥 + 3 28. √𝑥𝑥3 − 𝑥𝑥2 − √4𝑥𝑥 − 4

29. √25𝑥𝑥 − 25 − √𝑥𝑥3 − 𝑥𝑥2 30. 4√3
3
− 2√3

9
31. √27

2
− 3√3

4

32. �49
𝑥𝑥4

+ �81
𝑥𝑥8

33. 2𝑎𝑎 �𝑎𝑎
16

4 − 5𝑎𝑎 �𝑎𝑎
81

4 34. −4 � 4
𝑦𝑦9

3 + 3 � 9
𝑦𝑦12

3

35. A student simplifies the below expression as follows:

√8 + √163 ?
=
 
√4 ∙ 2 + √8 ∙ 23

?
=
 
√4 ∙ √2 + √83 ∙ √23

?
=
 

 2√2 + 2√23  

?
=
 

 4√4 

?
= 8 

Check each equation for correctness and disscuss any errors that you can find. What would you do differently 
and why? 

36. Match each expression from Column I with the equivalent expression in Column II. Assume that 𝐴𝐴 and 𝐵𝐵 
represent positive real numbers.

Column I        Column II

A. �𝐴𝐴 + √𝐵𝐵��𝐴𝐴 − √𝐵𝐵� a. 𝐴𝐴 − 𝐵𝐵 

B. �√𝐴𝐴 + 𝐵𝐵��√𝐴𝐴 − 𝐵𝐵� b. 𝐴𝐴 + 2𝐵𝐵√𝐴𝐴 + 𝐵𝐵2 

C. �√𝐴𝐴 + √𝐵𝐵��√𝐴𝐴 − √𝐵𝐵� c. 𝐴𝐴 − 𝐵𝐵2 

D. �√𝐴𝐴 + √𝐵𝐵�
2

d. 𝐴𝐴 − 2√𝐴𝐴𝐴𝐴 + 𝐵𝐵 

E. �√𝐴𝐴 − √𝐵𝐵�
2

e. 𝐴𝐴2 − 𝐵𝐵 

F. �√𝐴𝐴 + 𝐵𝐵�
2

f. 𝐴𝐴 + 2√𝐴𝐴𝐴𝐴 + 𝐵𝐵 
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Multiply, and then simplify each product. Assume that all variables represent positive real numbers. 

37. √5�3 − 2√5� 38. √3�3√3 − √2� 39. √2�5√2 − √10�

40. √3�−4√3 + √6� 41. √23 �√43 − 2√323 � 42. √33 �√93 + 2√213 � 

43. �√3 − √2��√3 + √2� 44. �√5 + √7��√5 − √7� 45. �2√3 + 5��2√3 − 5�

46. �6 + 3√2��6 − 3√2� 47. �5 − √5�
2

48. �√2 + 3�
2

49. �√𝑎𝑎 + 5√𝑏𝑏��√𝑎𝑎 − 5√𝑏𝑏� 50. �2√𝑥𝑥 − 3√𝑦𝑦��2√𝑥𝑥 + 3√𝑦𝑦� 51. �√3 + √6�
2

52. �√5− √10�
2

53. �2√5 + 3√2�
2

54. �2√3 − 5√2�
2

55. �4√3− 5��√3− 2� 56. �4√5 + 3√3��3√5− 2√3� 57. ��2𝑦𝑦3 − 5���2𝑦𝑦3 + 1�

58. �√𝑥𝑥 + 5− 3��√𝑥𝑥 + 5 + 3� 59. �√𝑥𝑥 + 1− √𝑥𝑥��√𝑥𝑥 + 1 + √𝑥𝑥�  60. �√𝑥𝑥 + 2 + √𝑥𝑥 − 2�
2

Given 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), find (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) and (𝑓𝑓𝑓𝑓)(𝑥𝑥). 

61. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥√20𝑥𝑥  and  𝑔𝑔(𝑥𝑥) = 3√5𝑥𝑥3 62.  𝑓𝑓(𝑥𝑥) = 2𝑥𝑥√64𝑥𝑥4   and  𝑔𝑔(𝑥𝑥) = −3√4𝑥𝑥54  

Rationalize each denominator and simplify, if possible. Assume that all variables represent positive real numbers. 

63. √5
2√2

64. 3
5√3

65. 12
√6

66. − 15
√24

67. − 10
√20

68. �3𝑥𝑥
20

69. �5𝑦𝑦
32

70. √7𝑎𝑎3

√3𝑏𝑏3  71. �2𝑦𝑦43

√6𝑥𝑥43  

72. √3𝑛𝑛43

√5𝑚𝑚23  73. 𝑝𝑝𝑝𝑝
�𝑝𝑝3𝑞𝑞4  74. 2𝑥𝑥

√18𝑥𝑥85  

75. 17
6+√2

76. 4
3−√5

77. 2√3
√3−√2

78. 6√3
3√2−√3

79. 3
3√5+2√3

80. √2+√3
√3+5√2

81. 𝑚𝑚−4
√𝑚𝑚+2

82. 4
√𝑥𝑥−2√𝑦𝑦

83. √3+2√𝑥𝑥
√3−2√𝑥𝑥

84. √𝑥𝑥−2
3√𝑥𝑥+√𝑦𝑦

85. 2√𝑎𝑎
√𝑎𝑎−√𝑏𝑏

86. √𝑥𝑥−√𝑦𝑦
√𝑥𝑥+√𝑦𝑦

Write each quotient in lowest terms. Assume that all variables represent positive real numbers. 

87. 10−20√5
10

      88. 12+6√3
6

     89. 12−9√72
18
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90. 2𝑥𝑥+√8𝑥𝑥2

2𝑥𝑥
91. 6𝑝𝑝−�24𝑝𝑝3

3𝑝𝑝
92. 9𝑥𝑥+√18

15

93. When solving one of the trigonometry problems, a student come up with the answer √3−1
1+√3

. The textbook 

answer to this problem was 2 − √3. Was the student’s answer equivalent to the textbook answer? 

Solve each problem. 

94. The base of the second tallest of the Pyramids of Giza is a square with an area of
46,225 m2. What is its perimeter?

95. The areas of two types of square wall tiles sold at the local Home Depot store are
48 cm2 and 108 cm2, respectively. What is the difference in the length of sides of
the two tiles? Give the exact answer in a simplified radical form and its
approximation to the nearest tenth.

 Area = 
48 𝑐𝑐𝑐𝑐2 

Area = 
108 𝑐𝑐𝑐𝑐2 

https://commons.wikimedia.org/wiki/File:Great_Pyramid_of_Giza.jpg
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RD5 Radical Equations 

In this section, we discuss techniques for solving radical equations. These are equations 
containing at least one radical expression with a variable, such as √3𝑥𝑥 − 2 = 𝑥𝑥, or a 

variable expression raised to a fractional exponent, such as (2𝑥𝑥)
1
3 + 1 = 5.

At the end of this section, we revisit working with formulas involving radicals as well as 
application problems that can be solved with the use of radical equations.  

Radical Equations 

Definition 5.1 A radical equation is an equation in which a variable appears in one or more radicands. 
This includes radicands ‘hidden’ under fractional exponents. 
For example, since (𝑥𝑥 − 1)

1
2 = √𝑥𝑥 − 1, then the base 𝑥𝑥 − 1 is, in fact, the ‘hidden’ 

radicand. 

Some examples of radical equations are 

𝑥𝑥 = √2𝑥𝑥,   √𝑥𝑥 + √𝑥𝑥 − 2 = 5,   (𝑥𝑥 − 4)
3
2 = 8,  √3 + 𝑥𝑥3 = 5 

Note that 𝑥𝑥 = √2 is not a radical equation since there is no variable under the radical sign. 

The process of solving radical equations involves clearing radicals by raising both sides of 
an equation to an appropriate power. This method is based on the following property of 
equality. 

Power Rule: For any odd natural number 𝒏𝒏, the equation 𝒂𝒂 =  𝒃𝒃 is equivalent to the equation 𝒂𝒂𝒏𝒏 = 𝒃𝒃𝒏𝒏. 

For any even natural number 𝒏𝒏, if an equation 𝒂𝒂 =  𝒃𝒃 is true, then 𝒂𝒂𝒏𝒏 = 𝒃𝒃𝒏𝒏 is true. 

When rephrased, the power rule for odd powers states that the solution sets to both 
equations, 𝑎𝑎 =  𝑏𝑏 and 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛, are exactly the same.  

However, the power rule for even powers states that the solutions to the original equation 
𝑎𝑎 =  𝑏𝑏 are among the solutions to the ‘power’ equation 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛.  

Unfortunately, the reverse implication does not hold for even numbers 𝑛𝑛. We cannot 
conclude that 𝑎𝑎 =  𝑏𝑏 from the fact that 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 is true. For instance, 32 = (−3)2 is true 
but 3 ≠ −3. This means that not all solutions of the equation 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 are in fact true 
solutions to the original equation 𝑎𝑎 =  𝑏𝑏. Solutions that do not satisfy the original equation 
are called extraneous solutions or extraneous roots. Such solutions must be rejected. 

For example, to solve √2 − 𝑥𝑥 = 𝑥𝑥, we may square both sides of the equation to obtain the 
quadratic equation 

2 − 𝑥𝑥 = 𝑥𝑥2. 

Then, we solve it via factoring and the zero-product property: 

𝑥𝑥2 + 𝑥𝑥 − 2 = 0 

(𝑥𝑥 + 2)(𝑥𝑥 − 1) = 0 
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So, the possible solutions are 𝑥𝑥 = −2 and 𝑥𝑥 = 1. 
Notice that 𝑥𝑥 = 1 satisfies the original equation, as √2 − 1 = 1 is true. However, 𝑥𝑥 = −2 
does not satisfy the original equation as its left side equals to �2 − (−2) = √4 = 2, while 
the right side equals to −2. Thus, 𝑥𝑥 = −2 is the extraneous root and as such, it does not 
belong to the solution set of the original equation. So, the solution set of the original 
equation is {1}. 

Caution: When the power rule for even powers is used to solve an equation, every 
solution of the ‘power’ equation must be checked in the original equation. 

Solving Equations with One Radical 

Solve each equation.  

a. √3𝑥𝑥 + 4 = 4 b. √2𝑥𝑥 − 5 + 4 = 0

c. 2√𝑥𝑥 + 1 = 𝑥𝑥 − 7 d. √𝑥𝑥 − 83 + 2 = 0

a. Since the radical in √3𝑥𝑥 + 4 = 4 is isolated on one side of the equation, squaring both
sides of the equation allows for clearing (reversing) the square root. Then, by solving
the resulting polynomial equation, one can find the possible solution(s) to the original
equation.

�√3𝑥𝑥 + 4�
2

= (4)2

3𝑥𝑥 + 4 = 16 

3𝑥𝑥 = 12 

𝑥𝑥 = 4 

To check if 4 is a true solution, it is enough to check whether or not 𝑥𝑥 = 4 satisfies the 
original equation.  

√3 ∙ 4 + 4 
?
=  4

√16 
?
=  4

4 = 4

Since 𝑥𝑥 = 4 satisfies the original equation, the solution set is {𝟒𝟒}. 

b. To solve √2𝑥𝑥 − 5 + 4 = 0, it is useful to isolate the radical on one side of the equation.
So, consider the equation

√2𝑥𝑥 − 5 = −4

Notice that the left side of the above equation is nonnegative for any 𝑥𝑥-value while the 
right side is constantly negative. Thus, such an equation cannot be satisfied by any 𝑥𝑥-
value. Therefore, this equation has no solution. 

Solution 

�√𝒂𝒂�
𝟐𝟐

= �𝒂𝒂
𝟏𝟏
𝟐𝟐�

𝟐𝟐
= 𝒂𝒂 

true 
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c. Squaring both sides of the equation gives us

�2√𝑥𝑥 + 1�
2

= (𝑥𝑥 − 7)2

4(𝑥𝑥 + 1) = 𝑥𝑥2 − 14𝑥𝑥 + 49 

4𝑥𝑥 + 4 = 𝑥𝑥2 − 14𝑥𝑥 + 49 

𝑥𝑥2 − 18𝑥𝑥 + 45 = 0 

(𝑥𝑥 − 3)(𝑥𝑥 − 15) = 0 

So, the possible solutions are 𝑥𝑥 = 3  or  𝑥𝑥 = 15. We check each of them by substituting 
them into the original equation. 

If 𝑥𝑥 = 3, then If 𝑥𝑥 = 15, then 

2√3 + 1
?

 =  3 − 7 2√15 + 1
?

 =  15 − 7 

 2√4
?

 =  − 4  2√16
?

 =  8 

 4 ≠ −4   8 = 8 

Since only 15 satisfies the original equation, the solution set is {15}. 

d. To solve √𝑥𝑥 − 83 + 2 = 0, we first isolate the radical by subtracting 2 from both sides
of the equation.

 √𝑥𝑥 − 83 = −2 

Then, to clear the cube root, we raise both sides of the equation to the third power. 
�√𝑥𝑥 − 83 �

3
= (−2)3

So, we obtain 
𝑥𝑥 − 8 = −8 

𝑥𝑥 = 0 

Since we applied the power rule for odd powers, the obtained solution is the true 
solution. So the solution set is {0}. 

Observation: When using the power rule for odd powers checking the obtained solutions 
against the original equation is not necessary. This is because there is no risk of obtaining 
extraneous roots when applying the power rule for odd powers. 

To solve radical equations with more than one radical term, we might need to apply the 
power rule repeatedly until all radicals are cleared. In an efficient solution, each application 
of the power rule should cause clearing of at least one radical term. For that reason, it is a 
good idea to isolate a single radical term on one side of the equation before each application 
of the power rule. For example, to solve the equation 

 the bracket is 
essential here 

 
apply the perfect 
square formula 

(𝑎𝑎 − 𝑏𝑏)2 
= 𝒂𝒂𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 

true false So 𝑥𝑥 = 3 is an 
extraneous root. 
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√𝑥𝑥 − 3 + √𝑥𝑥 + 5 = 4,

we isolate one of the radicals before squaring both sides of the equation. So, we have 

�√𝑥𝑥 − 3�
2

= �4 − √𝑥𝑥 + 5�
2

𝑥𝑥 − 3 = 16�
𝑎𝑎2
− 8√𝑥𝑥 + 5�����

2𝑎𝑎𝑎𝑎
+ 𝑥𝑥 + 5���

𝑏𝑏2

Then, we isolate the remaining radical term and simplify, if possible. This gives us 

8√𝑥𝑥 + 5 = 24 

√𝑥𝑥 + 5 = 3

Squaring both sides of the last equation gives us 

𝑥𝑥 + 5 = 9 

𝑥𝑥 = 4 

The reader is encouraged to check that 𝑥𝑥 = 𝟒𝟒 is the true solution to the original equation. 

A general strategy for solving radical equations, including those with two radical terms, is 
as follows. 

Summary of Solving a Radical Equation 

 Isolate one of the radical terms. Make sure that one radical term is alone on one side
of the equation.

 Apply an appropriate power rule. Raise each side of the equation to a power that is
the same as the index of the isolated radical.

 Solve the resulting equation. If it still contains a radical, repeat the first two steps.

 Check all proposed solutions in the original equation.

 State the solution set to the original equation.

Solving Equations Containing Two Radical Terms 

Solve each equation.  

a. √3𝑥𝑥 + 1 − √𝑥𝑥 + 4 = 1 b. √4𝑥𝑥 − 53 = 2√𝑥𝑥 + 13  

a. We start solving the equation  √3𝑥𝑥 + 1 − √𝑥𝑥 + 4 = 1 by isolating one radical on one
side of the equation. This can be done by adding √𝑥𝑥 + 4  to both sides of the equation.
So, we have

√3𝑥𝑥 + 1 = 1 + √𝑥𝑥 + 4

Solution 

Remember that the 
perfect square formula 
consists of three terms. 
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which after squaring give us 

�√3𝑥𝑥 + 1�
2

= �1 + √𝑥𝑥 + 4�
2

3𝑥𝑥 + 1 = 1 + 2√𝑥𝑥 + 4 + 𝑥𝑥 + 4 

2𝑥𝑥 − 4 = 2√𝑥𝑥 + 4 

𝑥𝑥 − 2 = √𝑥𝑥 + 4. 

To clear the remaining radical, we square both sides of the above equation again. 

(𝑥𝑥 − 2)2 = �√𝑥𝑥 + 4�
2

𝑥𝑥2 − 4𝑥𝑥 + 4 = 𝑥𝑥 + 4 

𝑥𝑥2 − 5𝑥𝑥 = 0. 

The resulting polynomial equation can be solved by factoring and applying the zero-
product property. Thus, 

𝑥𝑥(𝑥𝑥 − 5) = 0. 

So, the possible roots are  𝑥𝑥 = 0  or  𝑥𝑥 = 5. 

We check each of them by substituting to the original equation. 

If 𝑥𝑥 = 0, then  If 𝑥𝑥 = 5, then 

√3 ∙ 0 + 1− √0 + 4
?

 =  1 √3 ∙ 5 + 1 − √5 + 4
?

 =  1 

√1 − √4
?

 =  1 √16 − √9
?

 =  1 

1 − 2
?

 =  1  4 − 3
?

 =  1 

−1 ≠ 1  1 = 1 

Only 5 satisfies the original equation. So, the solution set is {𝟓𝟓}. 

b. To solve the equation √4𝑥𝑥 − 53 = 2√𝑥𝑥 + 13 , we would like to clear the cubic roots. 
This can be done by cubing both of its sides, as shown below. 

�√4𝑥𝑥 − 53 �
3

= �2√𝑥𝑥 + 13 �
3

4𝑥𝑥 − 5 = 23(𝑥𝑥 + 1) 

4𝑥𝑥 − 5 = 8𝑥𝑥 + 8 

−13 = 4𝑥𝑥

𝑥𝑥 = −𝟏𝟏𝟏𝟏
𝟒𝟒

 

Since we applied the power rule for cubes, the obtained root is the true solution of the 
original equation. 

true false 

 the bracket is 
essential here 

Since 𝑥𝑥 = 0 is the 
extraneous root, it 

does not belong to the 
solution set.  
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Formulas Containing Radicals 

Many formulas involve radicals. For example, the period 𝑇𝑇, in seconds, of a pendulum of 
length 𝐿𝐿, in feet, is given by the formula 

𝑇𝑇 = 2𝜋𝜋�
𝐿𝐿

32

Sometimes, we might need to solve a radical formula for a specified variable. In addition 
to all the strategies for solving formulas for a variable, discussed in Sections L2, F4, and 
RT6, we may need to apply the power rule to clear the radical(s) in the formula. 

Solving Radical Formulas for a Specified Variable 

Solve each formula for the indicated variable.  

a. 𝑁𝑁 = 1
2𝜋𝜋 �

𝒂𝒂
𝑟𝑟
  for  𝒂𝒂 b. 𝑟𝑟 = �𝐴𝐴

𝑷𝑷
3 − 1  for  𝑷𝑷

a. Since 𝒂𝒂 appears in the radicand, to solve 𝑁𝑁 = 1
2𝜋𝜋�

𝒂𝒂
𝑟𝑟
  for 𝒂𝒂, we may want to clear the 

radical by squaring both sides of the equation. So, we have 

𝑁𝑁2 = �
1

2𝜋𝜋
�
𝒂𝒂
𝑟𝑟
�
2

𝑁𝑁2 =
1

(2𝜋𝜋)2 ∙
𝒂𝒂
𝑟𝑟

𝟒𝟒𝝅𝝅𝟐𝟐𝑵𝑵𝟐𝟐𝒓𝒓 = 𝒂𝒂 

Note: We could also first multiply by 2𝜋𝜋 and then square both sides of the equation. 

b. First, observe the position of 𝑷𝑷 in the equation  𝑟𝑟 = �𝐴𝐴
𝑷𝑷

3 − 1.  It appears in the

denominator of the radical. Therefore, to solve for 𝑷𝑷, we may plan to isolate the cube
root first, cube both sides of the equation to clear the radical, and finally bring 𝑷𝑷 to the
numerator. So, we have

𝑟𝑟 = �𝐴𝐴
𝑷𝑷

3
− 1

(𝑟𝑟 + 1)3 = ��
𝐴𝐴
𝑷𝑷

3
�

3

Solution 
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(𝑟𝑟 + 1)3 =
𝐴𝐴
𝑷𝑷

𝑷𝑷 =
𝑨𝑨

(𝒓𝒓+ 𝟏𝟏)𝟑𝟑

Radicals in Applications 

Many application problems in sciences, engineering, or finances translate into radical 
equations. 

Finding the Velocity of a Skydiver 

After 𝑑𝑑 meters of a free fall from an airplane, a skydiver's velocity 
𝑣𝑣, in kilometers per hour, can be estimated according to the formula 
𝑣𝑣 = 15.9√𝑑𝑑. Approximately how far, in meters, does a skydiver 
need to fall to attain the velocity of 100 km/h? 

We may substitute 𝑣𝑣 = 100 into the equation 𝑣𝑣 = 15.9√𝑑𝑑 and solve it for 𝑑𝑑, as below. 

100 = 15.9√𝑑𝑑 

6.3 ≈ √𝑑𝑑 

𝟒𝟒𝟒𝟒 ≈ 𝒅𝒅 

Thus, a skydiver falls at 100 kph approximately after 40 meters of free falling. 

RD.5  Exercises 

True or false. 

1. √2𝑥𝑥 = 𝑥𝑥2 − √5 is a radical equation.

2. When raising each side of a radical equation to a power, the resulting equation is equivalent to the original
equation.

3. √3𝑥𝑥 + 9 = 𝑥𝑥 cannot have negative solutions.

4. −9 is a solution to the equation √𝑥𝑥 = −3.

Solve each equation. 

Solution 
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5. √7𝑥𝑥 − 3 = 6 6. �5𝑦𝑦 + 2 = 7 7. √6𝑥𝑥 + 1 = 3 8. √2𝑘𝑘 − 4 = 6

9. √𝑥𝑥 + 2 = −6 10. �𝑦𝑦 − 3 = −2 11. √𝑥𝑥3 = −3 12. √𝑎𝑎3 = −1

13. �𝑦𝑦 − 34 = 2 14. √𝑛𝑛 + 14 = 3 15. 5 = 1
√𝑎𝑎

16. 1

√𝑦𝑦
= 3 

17. √3𝑟𝑟 + 1 − 4 = 0 18. √5𝑥𝑥 − 4 − 9 = 0 19. 4 −�𝑦𝑦 − 2 = 0

20. 9− √4𝑎𝑎 + 1 = 0 21. 𝑥𝑥 − 7 = √𝑥𝑥 − 5 22. 𝑥𝑥 + 2 = √2𝑥𝑥 + 7

23. 2√𝑥𝑥 + 1− 1 = 𝑥𝑥 24. 3√𝑥𝑥 − 1 − 1 = 𝑥𝑥 25. 𝑦𝑦 − 4 = �4− 𝑦𝑦

26. 𝑥𝑥 + 3 = √9 − 𝑥𝑥 27. 𝑥𝑥 = √𝑥𝑥2 + 4𝑥𝑥 − 20 28. 𝑥𝑥 = √𝑥𝑥2 + 3𝑥𝑥 + 9

29. Discuss the validity of the following solution:

√2𝑥𝑥 + 1 = 4 − 𝑥𝑥

2𝑥𝑥 + 1 = 16 + 𝑥𝑥2

𝑥𝑥2 − 2𝑥𝑥 + 15 = 0 

(𝑥𝑥 − 5)(𝑥𝑥 + 3) = 0 

  so     𝑥𝑥 = 5 or 𝑥𝑥 = −3 

30. Discuss the validity of the following solution:

√3𝑥𝑥 + 1 − √𝑥𝑥 + 4 = 1

(3𝑥𝑥 + 1) − (𝑥𝑥 + 4) = 1

2𝑥𝑥 − 3 = 1 

2𝑥𝑥 = 4 

𝑥𝑥 = 2 

Solve each equation. 

31. √5𝑥𝑥 + 1 = √2𝑥𝑥 + 7 32. �5𝑦𝑦 − 3 = �2𝑦𝑦 + 3 33. �𝑝𝑝 + 53 = �2𝑝𝑝 − 43  

34. √𝑥𝑥2 + 5𝑥𝑥 + 13 = √𝑥𝑥2 + 4𝑥𝑥3  35. 2√𝑥𝑥 − 3 = √7𝑥𝑥 + 15 36. √6𝑥𝑥 − 11 = 3√𝑥𝑥 − 7

37. 3√2𝑡𝑡 + 3 − √𝑡𝑡 + 10 = 0 38. 2�𝑦𝑦 − 1 −�3𝑦𝑦 − 1 = 0 39. √𝑥𝑥 − 9 + √𝑥𝑥 = 1

40. �𝑦𝑦 − 5 + �𝑦𝑦 = 5 41. √3𝑛𝑛 + √𝑛𝑛 − 2 = 4 42. √𝑥𝑥 + 5 − 2 = √𝑥𝑥 − 1

43. √14 − 𝑛𝑛 = √𝑛𝑛 + 3 + 3 44. �𝑝𝑝 + 15 − �2𝑝𝑝 + 7 = 1

45. √4𝑎𝑎 + 1 − √𝑎𝑎 − 2 = 3 46. 4− √𝑎𝑎+ 6 = √𝑎𝑎 − 2
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47. √𝑥𝑥 − 5 + 1 = −√𝑥𝑥 + 3

49. √2𝑚𝑚 − 3 + 2 − √𝑚𝑚 + 7 = 0

51. √6𝑥𝑥 + 7 − √3𝑥𝑥 + 3 = 1

53. �5𝑦𝑦 + 4 − 3 = �2𝑦𝑦 − 2

55. �1 + √24 + 10𝑥𝑥 = √3𝑥𝑥 + 5
1
2
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48. √3𝑥𝑥 − 5 + √2𝑥𝑥 + 3 + 1 = 0

50. √𝑥𝑥 + 2 + √3𝑥𝑥 + 4 = 2

52. √4𝑥𝑥 + 7 − 4 = √4𝑥𝑥 − 1

54. �2√𝑥𝑥 + 11 = √4𝑥𝑥 + 2

56. (2𝑥𝑥 − 9 ) =  2 + (𝑥𝑥 − 8)
1
2

57. (3𝑘𝑘 + 7)
1
2 = 1 + (𝑘𝑘 + 2)

1
2 58. (𝑥𝑥 + 1)

1
2 − (𝑥𝑥 − 6)

1
2 = 1

59. �(𝑥𝑥2 − 9)
1
2 = 2 60. �√𝑥𝑥 + 4 = √𝑥𝑥 − 2 61. √𝑎𝑎2 + 30𝑎𝑎 = 𝑎𝑎 + √5𝑎𝑎

62. Discuss how to evaluate the expression  �5 + 3√3− �5− 3√3  without the use of a calculator.

Solve each formula for the indicated variable. 

63. 𝑍𝑍 = �𝐿𝐿
𝐶𝐶
    for 𝐿𝐿 64. 𝑉𝑉 = �2𝐾𝐾

𝑚𝑚
 for 𝐾𝐾 65. 𝑉𝑉 = �2𝐾𝐾

𝑚𝑚
  for 𝑚𝑚 

66. 𝑟𝑟 = �𝑀𝑀𝑀𝑀
𝐹𝐹

    for 𝑀𝑀 67. 𝑟𝑟 = �𝑀𝑀𝑀𝑀
𝐹𝐹

   for 𝐹𝐹 68. 𝑍𝑍 = √𝐿𝐿2 + 𝑅𝑅2   for 𝑅𝑅 

69. 𝐹𝐹 = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿

 for 𝐶𝐶 70. 𝑁𝑁 = 1
2𝜋𝜋�

𝑎𝑎
𝑟𝑟
     for 𝑎𝑎 71. 𝑁𝑁 = 1

2𝜋𝜋�
𝑎𝑎
𝑟𝑟
    for 𝑟𝑟

Solve each problem. 

72. One of Einstein's special relativity principles states that time passes faster for bodies
that travel with greater speed. The ratio of the time that passes for a body that moves
with a speed 𝑣𝑣 to the elapsed time that passes on Earth is called the aging rate and

can be calculated by using the  formula 𝒓𝒓 =
�𝒄𝒄𝟐𝟐−𝒗𝒗𝟐𝟐

�𝒄𝒄𝟐𝟐
, where 𝑐𝑐 is the speed of light,

and 𝑣𝑣 is the speed of the travelling body. For example, the aging rate of 0.5 means
that one year for the person travelling at the speed 𝑣𝑣 corresponds to two years spent
on Earth.

a. Find the aging rate for a person travelling at 80% of the speed of light.

b. Find the elapsed time on Earth for 20 days of travelling time at 60% of the speed of light.

73. Assume that the formula 𝑩𝑩𝑩𝑩𝑩𝑩 = �𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

 can be used to calculate the Body Surface Area, in square meters, 

of a person with the weight 𝑤𝑤, in kilograms, and the height ℎ, in centimeters. Greg weighs 78 kg and has a 
BSA of 3 m2. To the nearest centimeter, how tall is he? 

https://commons.wikimedia.org/wiki/File:STS-130_Endeavour_flyaround_5.jpg
http://creativity103.com/collections/Lightwaves/slides/light_vortex.html
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74. The distance 𝑑𝑑, in kilometers, to the horizon for an object ℎ kilometers above the Earth’s

surface can be approximated by using the equation  𝒅𝒅 = �𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+ 𝒉𝒉𝟐𝟐.  Estimate the
distance between a satellite that is 1000 km above the Earth’s surface and the horizon.

75. The formula 𝑺𝑺 = 𝟐𝟐𝟐𝟐
𝟓𝟓 �𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, where 𝑓𝑓 is the drag factor of the road surface, and 𝐿𝐿 is the

length of a skid mark, in meters, allows for calculating the speed 𝑆𝑆, in kilometers per hour,
of a car before it started skidding to a stop. To the nearest meter, calculate the length of the
skid marks left by a stopping car on a road surface with a drag factor of 0.5, if the car was
travelling at 50 km/h at the time of applying the brakes.

https://commons.wikimedia.org/wiki/File:Skidmarks_on_Shenton_Lane_-_geograph.org.uk_-_920647.jpg
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RD6 Complex Numbers 

Have you wondered if there’s a solution to an equation like 𝑥𝑥2 = −4? We know there is no 
solution in the set of real numbers since the square of any real number is positive; however, 
a solution does exist in the set of complex numbers. Complex numbers allow us to work 
with square roots of negative numbers and solve equations like 𝑥𝑥2 = −4. This is important 
because equations with complex solutions arise frequently in mathematics, physics, 
engineering, electronics, and many other fields.  
In this section, we introduce the imaginary unit and use it to perform operations with 
complex numbers. 

Imaginary and Complex Numbers 

Definition 6.1 The imaginary unit 𝑖𝑖 is the number whose square is −1, 

𝑖𝑖2 = −1    and    𝑖𝑖 = √−1 

The imaginary unit can be used to simplify the square roots of negative numbers, 

�−𝑝𝑝 = �𝑝𝑝 𝑖𝑖, 

where 𝑝𝑝 is a positive real number. 

Note:  The 𝑖𝑖 multiplies the radical and is not part of the radicand. 

Rewriting Square Roots of Negative Numbers Using 𝒊𝒊  

Write each expression in terms of 𝑖𝑖 and simplify if possible. 

a. √−25 b. √−7

c. √−72 d. −√−60

a. We use Definition 6.1 to rewrite the expression and simplify:
√−25 = √25 𝑖𝑖 = 𝟓𝟓𝟓𝟓 

b. √−7 = √𝟕𝟕 𝒊𝒊 since the radicand 7 has no perfect square factors.

c. √−72 = √72 𝑖𝑖 = √36 ⋅ 2 𝑖𝑖 = 𝟔𝟔√𝟐𝟐 𝒊𝒊 

d. −√−60 = −√60 𝑖𝑖 =  −√4 ⋅ 15 𝑖𝑖 =  − 𝟐𝟐√𝟏𝟏𝟏𝟏 𝒊𝒊 

Definition 6.2 A complex number in standard form is 𝑎𝑎 + 𝑏𝑏𝑏𝑏, where 𝑎𝑎 and 𝑏𝑏 are real numbers. 

𝑎𝑎 + 𝑏𝑏 𝑖𝑖 
imaginary part real part   

Solution 

 the leading negative 
remains unchanged
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Observation: When the real part of a complex number is zero, 𝑎𝑎 = 0, the number is 
imaginary (𝑏𝑏𝑏𝑏). When the imaginary part is zero, 𝑏𝑏 = 0, the number is real (𝑎𝑎). So there 
are three types of complex numbers - real numbers, imaginary numbers, and numbers that 
have both a real part and an imaginary part. 

Addition and Subtraction of Complex Numbers 

Now we are ready to perform some operations on complex numbers. 

To add or subtract complex numbers, combine the real parts together and the imaginary 
parts together, as in the example below: 

(1 + 2𝑖𝑖) + (7 − 3𝑖𝑖) = 1 + 7 + 2𝑖𝑖 − 3𝑖𝑖 = (1 + 7) + (2 − 3)𝑖𝑖 = 8 − 𝑖𝑖 

Caution: If the complex numbers are not already in standard form, convert them before 
performing operations. 

Adding and Subtracting Complex Numbers 

Perform operations and simplify, if possible. 

a. (9 − 4𝑖𝑖) − (2 + 6𝑖𝑖) b. √−81 + √−1

c. √−72 − 3√−2 d. �10− 2√−3� + �5 + 6√−27�

a. First rewrite the subtraction to release the brackets, then combine like terms.
9 − 4𝑖𝑖 − 2− 6𝑖𝑖 = (9− 2) + (−4𝑖𝑖 − 6𝑖𝑖) = 𝟕𝟕 − 𝟏𝟏𝟏𝟏𝟏𝟏 

b. Use √−1 = 𝑖𝑖 to rewrite in standard form before performing the addition

√−81 + √−1 = 9𝑖𝑖 + 𝑖𝑖 = 𝟏𝟏𝟏𝟏𝟏𝟏 

c. √−72 − 3√−2 = √72 𝑖𝑖 − 3√2 𝑖𝑖 = 6√2 𝑖𝑖 − 3√2 𝑖𝑖 = 𝟑𝟑√𝟐𝟐 𝒊𝒊 

d. �10 − 2√−3� + �5 + 6√−27� = �10 − 2√3 𝑖𝑖� + �5 + 6 ⋅ 3√3 𝑖𝑖�

 = �10 − 2√3 𝑖𝑖� + �5 + 18√3 𝑖𝑖� 

= 𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏√𝟑𝟑 𝒊𝒊 

Solution 

remember to simplify 
any radicands with 
perfect square factors

imaginary parts real parts 
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Multiplication of Complex Numbers 

Most of our algebraic rules for real numbers hold for complex numbers. One notable 
exception is that the product rule for radicals, √𝑎𝑎 ⋅ √𝑏𝑏 = √𝑎𝑎𝑎𝑎, is not true if 𝑎𝑎 and 𝑏𝑏 are 
both negative. To illustrate this, recall our definition of 𝑖𝑖 

𝑖𝑖2 = −1 and √−1 = 𝑖𝑖 

Now calculate 𝑖𝑖2 = √−1 ⋅ √−1 using √𝑎𝑎 ⋅ √𝑏𝑏 = √𝑎𝑎𝑎𝑎: 

√−1 ⋅ √−1 = √−1 ⋅ −1 = √1 = 1 

This contradicts our original definition that 𝑖𝑖2 = −1 and therefore √𝑎𝑎 ⋅ √𝑏𝑏 ≠ √𝑎𝑎𝑎𝑎 for 
negative 𝑎𝑎 and 𝑏𝑏. 

To avoid accidentally using an invalid rule, we always change √−1 to 𝑖𝑖 first, then carry out 
our calculations. This way, the order of operations will be applied correctly. 

Multiplying Complex Numbers 

Multiply. 

a. √−8 ⋅ √−2 b. 2𝑖𝑖 ⋅ 7𝑖𝑖

c. (4 + 3𝑖𝑖)(1 − 5𝑖𝑖) d. �5 + √−6��3− √−2 �

a. Rewrite in standard form before simplifying
√−8 ⋅ √−2 = 2√2 𝑖𝑖 ⋅ √2 𝑖𝑖 = 2√4 𝑖𝑖2 = 2 ⋅ 2 ⋅ (−1) = −𝟒𝟒

b. Multiply imaginary numbers like monomials then use 𝑖𝑖2 = −1 where appropriate

2𝑖𝑖 ⋅ 7𝑖𝑖 = 14𝑖𝑖2 = 14(−1) = −𝟏𝟏𝟏𝟏 

c. Use distribution to multiply complex numbers in the same way as binomials

(4 + 3𝑖𝑖)(1− 5𝑖𝑖) = 4 − 20𝑖𝑖 + 3𝑖𝑖 − 15𝑖𝑖2 = 4 − 17𝑖𝑖 − 15(−1) = 𝟏𝟏𝟏𝟏 − 𝟏𝟏𝟏𝟏𝟏𝟏 

d. �5 + √−6��3− √−2 � = �5 + √6 𝑖𝑖��3 − √2 𝑖𝑖� = 15 − 5√2 𝑖𝑖 + 3√6 𝑖𝑖 − √12 𝑖𝑖2

 = 15 + �−5√2 + 3√6�𝑖𝑖 − 2√3 (−1) 

= 𝟏𝟏𝟏𝟏 + 𝟐𝟐√𝟑𝟑 + �−𝟓𝟓√𝟐𝟐 + 𝟑𝟑√𝟔𝟔�𝒊𝒊 

Since complex numbers behave like binomials when multiplied, patterns can help us 
simplify some products more efficiently than using distribution or FOIL. In the following 
example, we use the perfect squares formula, (𝑎𝑎 ± 𝑏𝑏)2 = 𝑎𝑎2 ± 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2, and the 

Solution 

replace 𝑖𝑖2with its value of 
−1 when it appears 

product rule valid here 
since 2 > 0 

collect like terms 
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difference of squares formula, (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2, which were introduced in 
Section P2. 

Multiplying Complex Numbers Using Patterns 

Multiply. 

a. (4 + 𝑖𝑖)2 b. (7− 6𝑖𝑖)2

c. (1 + 2𝑖𝑖)(1 − 2𝑖𝑖) d. (−3 + 𝑖𝑖)(−3 − 𝑖𝑖)

a. We recognize the perfect squares pattern with 𝑎𝑎 = 4 and 𝑏𝑏 = 𝑖𝑖.

(4 + 𝑖𝑖)2 = 42 + 2 ⋅ 4 ⋅ 𝑖𝑖 + 𝑖𝑖2 = 16 + 8𝑖𝑖 + (−1) = 𝟏𝟏𝟏𝟏 + 𝟖𝟖𝟖𝟖 

b. Here 𝑎𝑎 = 7,𝑏𝑏 = 6𝑖𝑖 in the perfect squares formula. The binomial is a difference, so the

formula uses the subtraction sign for the middle term.

(7 − 6𝑖𝑖)2 = 72 − 2 ⋅ 7 ⋅ (6𝑖𝑖) + (6𝑖𝑖)2 = 49 − 84𝑖𝑖 + 36𝑖𝑖2 = 49 − 84𝑖𝑖 − 36

= 𝟏𝟏𝟏𝟏 − 𝟖𝟖𝟖𝟖𝟖𝟖 

c. This is a product of conjugates, so we use the difference of squares formula with 𝑎𝑎 =

1, 𝑏𝑏 = 2𝑖𝑖.

(1 + 2𝑖𝑖)(1 − 2𝑖𝑖) = 12 − (2𝑖𝑖)2 = 1 − 4𝑖𝑖2 = 1 + 4 = 𝟓𝟓 

d. Apply the difference of squares formula with 𝑎𝑎 = −3,𝑏𝑏 = 𝑖𝑖.

 (−3 + 𝑖𝑖)(−3− 𝑖𝑖) = (−3)2 − 𝑖𝑖2 = 9 + 1 = 𝟏𝟏𝟏𝟏 

Notice in Example 4c and 4d that the product of conjugate pairs resulted in a real value. In 
general, we have 

(𝑎𝑎 + 𝑏𝑏𝑏𝑏)(𝑎𝑎 − 𝑏𝑏𝑏𝑏) = 𝑎𝑎2 − (𝑏𝑏𝑏𝑏)2 = 𝑎𝑎2 − 𝑏𝑏2𝑖𝑖2 = 𝑎𝑎2 − 𝑏𝑏2(−1) = 𝑎𝑎2 + 𝑏𝑏2 

Therefore, the product of any complex conjugate pair, 𝑎𝑎 + 𝑏𝑏𝑏𝑏 and 𝑎𝑎 − 𝑏𝑏𝑏𝑏, is real and equal 
to 𝑎𝑎2 + 𝑏𝑏2. This new pattern is referred to as the product of complex conjugates formula 

(𝒂𝒂 + 𝒃𝒃𝒃𝒃)(𝒂𝒂 − 𝒃𝒃𝒃𝒃) = 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐. 

Powers of 𝒊𝒊 

We simplify complex expressions by treating 𝑖𝑖 much like a variable; however, it is 
important to remember that 𝑖𝑖 has a constant value of √−1. This means we can simplify 
powers of 𝑖𝑖 further than we would be able to simplify powers of variables. In fact, any 

Solution 
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power of 𝑖𝑖 can be simplified to one of four values: 𝑖𝑖, −1,−𝑖𝑖, or 1. Look for the pattern in 
the first several powers: 

𝑖𝑖 = 𝑖𝑖 
𝑖𝑖2 = −1 
𝑖𝑖3 = 𝑖𝑖 ⋅ 𝑖𝑖2 = −𝑖𝑖 
𝑖𝑖4 = (𝑖𝑖2)2 = (−1)2 = 1 
𝑖𝑖5 = 𝑖𝑖4 ⋅ 𝑖𝑖 = 1 ⋅ 𝑖𝑖 = 𝑖𝑖 
𝑖𝑖6 = 𝑖𝑖4 ⋅ 𝑖𝑖2 = 1 ⋅ (−1) = −1 
𝑖𝑖7 = 𝑖𝑖4 ⋅ 𝑖𝑖3 = 1 ⋅ (−𝑖𝑖) = −𝑖𝑖 
𝑖𝑖8 = (𝑖𝑖4)2 = (1)2 = 1 

As we go to higher powers, the pattern 𝑖𝑖,−1,−𝑖𝑖, 1 repeats over and over as above. 

In the evaluation of the 5th to 8th powers above, the power 𝑖𝑖4 was used repeatedly to rewrite 
the original power. This is because 𝑖𝑖4 = 1, which is a very nice number to work with. When 
simplifying powers of 𝑖𝑖, it is easiest and most efficient to rewrite the power in terms of 𝑖𝑖4 
using exponent rules, as in the example below. 

Simplifying Powers of 𝒊𝒊 

Simplify. 

a. 𝑖𝑖12 b. 𝑖𝑖33

c. 𝑖𝑖42 d. 𝑖𝑖63

a. Since 12 ÷ 4 = 3, we can rewrite 𝑖𝑖12 as 𝑖𝑖4⋅3, which is equivalent to (𝑖𝑖4)3 = (1)3 = 𝟏𝟏

b. This time, 33 ÷ 4 = 8 with remainder 1. So we can write 33 = 4 ⋅ 8 + 1, which is

used in our simplification as

𝑖𝑖4⋅8+1 = (𝑖𝑖4)8 ⋅ 𝑖𝑖 = (1)8 ⋅ 𝑖𝑖 = 𝒊𝒊 

c. Here, 42 ÷ 4 = 10 with a remainder of 2:

𝑖𝑖42 = 𝑖𝑖40𝑖𝑖2 = (1)(−1) = −𝟏𝟏 

d. 63 has a remainder of 3 when divided by 4:

𝑖𝑖63 = 𝑖𝑖60𝑖𝑖3 = (1)(−𝑖𝑖) = −𝒊𝒊 

Observation: Since any perfect 4th power of 𝑖𝑖 simplifies to 1, when simplifying higher 
powers of 𝑖𝑖, we can divide the exponent by 4, note any remainder, 𝑟𝑟, and replace the power 
with 𝑖𝑖𝑟𝑟. 

Solution 
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Division of Complex Numbers 

Dividing complex numbers is very similar to rationalizing denominators. We get rid of any 
imaginary numbers in the denominator by using the product of complex conjugates 
formula, then simplify to standard form. 

Dividing Complex Numbers 

Simplify. 

a. 
2+3𝑖𝑖
1+2𝑖𝑖

b. 
3
𝑖𝑖

c. 
5+2𝑖𝑖
5−2𝑖𝑖

d. (2− 𝑖𝑖) ÷ (𝑖𝑖 − 3)

a. We identify the complex conjugate of the denominator as 1 − 2𝑖𝑖, then multiply
numerator and denominator by this value:

2 + 3𝑖𝑖
1 + 2𝑖𝑖

=
2 + 3𝑖𝑖
1 + 2𝑖𝑖

⋅  
1 − 2𝑖𝑖
1 − 2𝑖𝑖

=
2 − 4𝑖𝑖 + 3𝑖𝑖 − 6𝑖𝑖2

12 + 22
=

2 − 𝑖𝑖 + 6
5

=
8 − 𝑖𝑖

5
=
𝟖𝟖
𝟓𝟓
−
𝟏𝟏
𝟓𝟓
𝒊𝒊 

b. The denominator is 𝑖𝑖 = 0 + 1𝑖𝑖, so the complex conjugate is 0 − 1𝑖𝑖 = −𝑖𝑖
3
𝑖𝑖
⋅  −𝑖𝑖
−𝑖𝑖

 = −3𝑖𝑖
−𝑖𝑖2

= −3𝑖𝑖
−(−1)

= −3𝑖𝑖 

Alternatively, we could multiply numerator and denominator by 𝑖𝑖 and obtain the same 

result (but that’s only the case when the denominator is a purely imaginary number) 

3
𝑖𝑖
⋅  
𝑖𝑖
𝑖𝑖

 =
3𝑖𝑖
𝑖𝑖2

=
3𝑖𝑖
−1

= −3𝑖𝑖 

c. Here, the complex conjugate of the denominator, 5 − 2𝑖𝑖, is 5 + 2𝑖𝑖

5 + 2𝑖𝑖
5 − 2𝑖𝑖

⋅  
5 + 2𝑖𝑖
5 + 2𝑖𝑖

=
52 + 20𝑖𝑖 + (2𝑖𝑖)2

52 + 22
=

25 + 20𝑖𝑖 − 4
25 + 4

=
21 + 20𝑖𝑖

29
=

21
29

+
20
29

𝑖𝑖 

d. Rewrite the division as a fraction and change the denominator into standard form,

(2 − 𝑖𝑖) ÷ (𝑖𝑖 − 3) = 2−𝑖𝑖
−3+𝑖𝑖

, then multiply the numerator and denominator by the

complex conjugate of the the denominator, −3− 𝑖𝑖

2 − 𝑖𝑖
−3 + 𝑖𝑖

⋅  
−3 − 𝑖𝑖
−3 − 𝑖𝑖

=
−6− 2𝑖𝑖 + 3𝑖𝑖 + 𝑖𝑖2

(−3)2 + 12
=
−6 + 𝑖𝑖 − 1

9 + 1
=
−7 + 𝑖𝑖

10
= −

𝟕𝟕
𝟏𝟏𝟏𝟏

+
𝟏𝟏
𝟏𝟏𝟏𝟏

𝒊𝒊 

 

Solution 

(𝑎𝑎 + 𝑏𝑏𝑏𝑏)(𝑎𝑎 − 𝑏𝑏𝑏𝑏) = 𝑎𝑎2 + 𝑏𝑏2 

 

standard form,  𝑎𝑎 + 𝑏𝑏𝑏𝑏 
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RD.6  Exercises 

Find the mistake. 
1. √−3 ⋅ √−15 = √−3 ⋅ −15 = √45 = √9 ⋅ 5 = 3√5

Match each number in Column I to its complex conjugate in Column II. 

2. Column I  Column II 

a. 8 + 21𝑖𝑖 A.  8 + 21𝑖𝑖

b. −8 − 21𝑖𝑖 B. 8− 21𝑖𝑖

c. 8− 21𝑖𝑖 C.  −8 − 21𝑖𝑖

d. −8 + 21𝑖𝑖 D. −8 + 21𝑖𝑖

3. Quinn says the solution to 𝑥𝑥2 = −64 is 8𝑖𝑖, while Finn says the solution is −8𝑖𝑖. Who is correct?

Complete the indicated operation(s) and simplify. 

4. √−81 5. √−100 6. √−72 7. √−98

8. √−5 ⋅ √−5 9. √−7 ⋅ √−7 10. √−10 ⋅ √−5 11. √−7 ⋅ √−21

12. √−75 + √−108 13. √−32 − √−128

14. 2√−45 − 7√−80 15. −3√−40 + 6√−250

16. �4 + √−64��7 + 2√−16� 17. �−2 + 9√−1��5 + √−49�

18. �6− √−8��3 + √−50� 19. �3− √−75��5− √−147�

20. �1 + √−18��1− √−18� 21. �8 + √−48��8− √−48�

22. 3𝑖𝑖(4 + 7𝑖𝑖) 23. 2𝑖𝑖(1 − 9𝑖𝑖) 24. (1 + 4𝑖𝑖)(5− 6𝑖𝑖) 25. (8− 𝑖𝑖)(2 − 10𝑖𝑖)

26. (5− 3𝑖𝑖)2 27. (6 + 7𝑖𝑖)2 28. (8 + 5𝑖𝑖)(8− 5𝑖𝑖) 29. (10− 9𝑖𝑖)(10 + 9𝑖𝑖)

30. 𝑖𝑖45 31. 𝑖𝑖56 32. 𝑖𝑖103 33. 𝑖𝑖201

34. 𝑖𝑖90 35. 𝑖𝑖79 36. 
6+√−60

2
37. 

6−√−504
3

38. 
5−3√−525

10
39. 

8+√−624
40

40. 
5
𝑖𝑖

41. 
6
5𝑖𝑖

42. 
7
4+𝑖𝑖

43. 
3

5+7𝑖𝑖
44. 

3−2𝑖𝑖
3+2𝑖𝑖

45. 
4+3𝑖𝑖
4−3𝑖𝑖

46. 
8−9𝑖𝑖
1−6𝑖𝑖

47. 
7+5𝑖𝑖
11+4𝑖𝑖



172   | Section RD6 

Radicals and Radical Functions 

Determine if the complex number is a solution to the equation given. 

48. 5𝑖𝑖 ;  𝑥𝑥2 + 25 = 0 49. −2𝑖𝑖 ;  𝑥𝑥2 = −4

50. 1 + 2𝑖𝑖 ;  𝑥𝑥2 − 2𝑥𝑥 + 5 = 0 51. 3− 2𝑖𝑖 ;  𝑥𝑥2 − 6𝑥𝑥 + 13 = 0

52. 4− 3𝑖𝑖 ;  𝑥𝑥2 − 3𝑥𝑥 + 10 = 0 53. 5 + 𝑖𝑖 ;  𝑥𝑥2 + 5𝑥𝑥 + 60 = 0
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Quadratic Equations and Functions 
In this chapter, we discuss various ways of solving quadratic equations, 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 +
𝑐𝑐 = 0, including equations quadratic in form, such as 𝑥𝑥−2 + 𝑥𝑥−1 − 20 = 0, and 
solving formulas for a variable that appears in the first and second power, such as 𝑘𝑘 in 
𝑘𝑘2 − 3𝑘𝑘 = 2𝑁𝑁. Frequently used strategies of solving quadratic equations include the 
completing the square procedure and its generalization in the form of the quadratic 
formula. Completing the square allows for rewriting quadratic functions in vertex 
form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − ℎ)2 + 𝑘𝑘, which is very useful for graphing as it provides 
information about the location, shape, and direction of the parabola.  

In the second part of this chapter, we examine properties and graphs of quadratic functions, including basic 
transformations of these graphs.  
Finally, these properties are used in solving application problems, particularly problems involving optimization. 

Q1 Methods of Solving Quadratic Equations 

As defined in Section F4, a quadratic equation is a second-degree polynomial equation in 
one variable that can be written in standard form as  

𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎, 

where 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are real numbers and 𝒂𝒂 ≠ 𝟎𝟎. Such equations can be solved in many 
different ways, as presented below. 

Solving by Graphing 

To solve a quadratic equation, for example 𝑥𝑥2 + 2𝑥𝑥 − 3 = 0, we can consider its left 
side as a function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 − 3 and the right side as a function 𝑔𝑔(𝑥𝑥) = 0. To 
satisfy the original equation, both function values must be equal. After graphing both 
functions on the same grid, one can observe that this happens at points of intersection 
of the two graphs.  

So the solutions to the original equation are the 𝑥𝑥-coordinates of the intersection points 
of the two graphs. In our example, these are the 𝒙𝒙-intercepts or the roots of the 
function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 − 3, as indicated in Figure 1.1.  

Thus, the solutions to 𝑥𝑥2 + 2𝑥𝑥 − 3 = 0 are 𝒙𝒙 = −𝟑𝟑 and 𝒙𝒙 = 𝟏𝟏. 

Note: Notice that the graphing method, although visually appealing, is not always 
reliable. For example, the solutions to the equation 49𝑥𝑥2 − 4 = 0 are 𝑥𝑥 = 2

7 and 
𝑥𝑥 = −2

7. Such numbers would be very hard to read from the graph. 

Thus, the graphing method is advisable to use when searching for integral solutions 
or estimations of solutions. 

To find exact solutions, we can use one of the algebraic methods presented below. 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟑𝟑 

1 

1 

solutions = 
x-intercepts 

−3

𝒈𝒈(𝒙𝒙) = 𝟎𝟎 

Figure 1.1 
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Solving by Factoring 

Many quadratic equations can be solved by factoring and employing the zero-product 
property, as in Section F4. 

For example, the equation 𝑥𝑥2 + 2𝑥𝑥 − 3 = 0 can be solved as follows: 

(𝑥𝑥 + 3)(𝑥𝑥 − 1) = 0 
so, by zero-product property, 

𝑥𝑥 + 3 = 0 or  𝑥𝑥 − 1 = 0, 
which gives us the solutions 

𝒙𝒙 = −𝟑𝟑 or  𝒙𝒙 = 𝟏𝟏. 

Solving by Using the Square Root Property 

Quadratic equations of the form 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒄𝒄 = 𝟎𝟎 can be solved by applying the square root 
property. 

Square Root For any positive real number 𝑎𝑎, if 𝒙𝒙𝟐𝟐 = 𝒂𝒂, then 𝒙𝒙 = ±√𝒂𝒂. 
 Property: This is because  √𝑥𝑥2 = |𝑥𝑥|. So, after applying the square root operator to both sides of the 

equation 𝑥𝑥2 = 𝑎𝑎, we have 
�𝑥𝑥2 = √𝑎𝑎 

|𝑥𝑥| = √𝑎𝑎 

𝑥𝑥 = ±√𝑎𝑎 

The ±√𝑎𝑎 is a shorter recording of two solutions: √𝑎𝑎 and −√𝑎𝑎. 

For example, the equation 49𝑥𝑥2 − 4 = 0 can be solved as follows: 

49𝑥𝑥2 − 4 = 0 

49𝑥𝑥2 = 4 

𝑥𝑥2 = 4
49

�𝑥𝑥2 = � 4
49

𝑥𝑥 = ±� 4
49

𝒙𝒙 = ±
𝟐𝟐
𝟕𝟕

Note: Using the square root property is a common solving strategy for quadratic equations 
where one side is a perfect square of an unknown quantity and the other side is a 
constant number. 

 
apply square root  
to both sides of 

the equation Here we use the 
square root property. 
Remember the ± sign! 
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Solve by the Square Root Property 

Solve each equation using the square root property. 
a. (𝑥𝑥 − 3)2 = 49 b. 2(3𝑥𝑥 − 6)2 − 54 = 0

a. Applying the square root property, we have

�(𝑥𝑥 − 3)2 = √49 

𝑥𝑥 − 3 = ±7 

𝑥𝑥 = 3 ± 7 

so 
  𝒙𝒙 = 𝟏𝟏𝟏𝟏  or  𝒙𝒙 = −𝟒𝟒 

b. To solve 2(3𝑥𝑥 − 6)2 − 54 = 0, we isolate the perfect square first and then apply the
square root property. So,

2(3𝑥𝑥 − 6)2 − 54 = 0 

(3𝑥𝑥 − 6)2 =
54
2

 

�(3𝑥𝑥 − 6)2 = √27 

3𝑥𝑥 − 6 = ±3√3 

3𝑥𝑥 = 6 ± 3√3 

𝑥𝑥 =
6 ± 3√3

3

𝑥𝑥 =
3�2 ± √3�

3

𝑥𝑥 = 2 ± √3 

Thus, the solution set is �𝟐𝟐 − √𝟑𝟑, 𝟐𝟐 + √𝟑𝟑�. 

Caution: To simplify expressions such as 6+3√3
3

, we factor the numerator first. The 
common errors to avoid are 

   6+3√3
3

= 9√3
3

= 3√3 
or 

  6+3√3
3

= 6 + √3 
or 

  6+3√3
3

= 2 + 3√3 

Solution 

incorrect order of operations 

incorrect canceling 

incorrect canceling 
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Solving by Completing the Square 

So far, we have seen how to solve quadratic equations, 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0, if the expression 
𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐  is factorable or if the coefficient 𝑏𝑏 is equal to zero. To solve other quadratic 
equations, we may try to rewrite the variable terms in the form of a perfect square, so that 
the resulting equation can be solved by the square root property.  

For example, to solve 𝑥𝑥2 + 6𝑥𝑥 − 3 = 0, we observe that the variable terms 𝑥𝑥2 + 6𝑥𝑥 could 
be written in perfect square form if we add 9, as illustrated in Figure 1.2. This is because 

𝑥𝑥2 + 6𝑥𝑥 + 9 = (𝑥𝑥 + 3)2 

Since the original equation can only be changed to an equivalent form, if we add 9, we must 
subtract 9 as well. (Alternatively, we could add 9 to both sides of the equation.) So, the 
equation can be transformed as follows:  

𝑥𝑥2 + 6𝑥𝑥 − 3 = 0 

𝑥𝑥2 + 6𝑥𝑥 + 9���������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 9 − 3 = 0 

(𝑥𝑥 + 3)2 = 12 

�(𝑥𝑥 + 3)2 = √12 

𝑥𝑥 + 3 = ±2√3 

𝑥𝑥 = −𝟑𝟑 ± 𝟐𝟐√𝟑𝟑 

Generally, to complete the square for the first two terms of the equation 

𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎, 

we take half of the 𝑥𝑥-coefficient, which is 𝒃𝒃
𝟐𝟐
, and square it. Then, we add and subtract that 

number, �𝑏𝑏
2
�
2
. (Alternatively, we could add �𝑏𝑏

2
�
2
 to both sides of the equation.)

This way, we produce an equivalent equation 

 𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + �𝒃𝒃
𝟐𝟐
�
𝟐𝟐
− �𝒃𝒃

𝟐𝟐
�
𝟐𝟐

+ 𝒄𝒄 = 𝟎𝟎,
and consequently, 

 �𝒙𝒙+ 𝒃𝒃
𝟐𝟐
�
𝟐𝟐
− 𝒃𝒃𝟐𝟐

𝟒𝟒
+ 𝒄𝒄 = 𝟎𝟎.

 
 
 
 

observe that 3 comes 
from taking half of 6       

square root 
property 

Completing the 
Square Procedure 

Figure 1.2 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 

𝑥𝑥 
𝑥𝑥 1 1 

1 1 1 
1 

     𝑥𝑥       +   3                            
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  

 

     �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�
  

 𝑥𝑥      +
  3 

𝑥𝑥 1 1 1 

 take away 9 

 

We can write this equation directly, by following the rule: 

 Write the sum of 𝒙𝒙 and half of the middle coefficient, 
square the binomial, and subtract the perfect square of 

the constant appearing in the bracket. 
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To complete the square for the first two terms of a quadratic equation with a leading 
coefficient of 𝑎𝑎 ≠ 1, 

𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎, 
we 

 divide the equation by 𝒂𝒂 (alternatively, we could factor a out of the first two terms) so
that the leading coefficient is 1, and then

 complete the square as in the previous case, where 𝒂𝒂 = 𝟏𝟏.

So, after division by 𝒂𝒂, we obtain 

 𝒙𝒙𝟐𝟐 + 𝒃𝒃
𝒂𝒂
𝒙𝒙 + 𝒄𝒄

𝒂𝒂
= 𝟎𝟎.

Since half of  𝒃𝒃
𝒂𝒂
  is 𝒃𝒃

𝟐𝟐𝟐𝟐
, then we complete the square as follows: 

 �𝒙𝒙+ 𝒃𝒃
𝟐𝟐𝟐𝟐
�
𝟐𝟐
− 𝒃𝒃𝟐𝟐

𝟒𝟒𝒂𝒂𝟐𝟐
+ 𝒄𝒄

𝒂𝒂
= 𝟎𝟎. 

 
 
 

Solve by Completing the Square 

Solve each equation using the completing the square method. 

a. 𝑥𝑥2 + 5𝑥𝑥 − 1 = 0 b. 3𝑥𝑥2 − 12𝑥𝑥 − 5 = 0

a. First, we complete the square for 𝑥𝑥2 + 5𝑥𝑥 by adding and subtracting �52�
2
and then we

apply the square root property. So, we have

𝑥𝑥2 + 5𝑥𝑥 + �5
2
�
2

�����������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− �5
2
�
2
− 1 = 0

�𝑥𝑥 + 5
2
�
2
− 25

4
− 1 ∙ 4

4
= 0 

�𝑥𝑥 + 5
2
�
2
− 29

4
= 0 

�𝑥𝑥 + 5
2
�
2

= 29
4

𝑥𝑥 + 5
2

= ±�29
4

 

Solution 

 Remember to subtract the perfect 
square of the constant appearing in 

the bracket! 

 
apply square root  
to both sides of 

the equation 
remember to use 

the ± sign! 
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𝑥𝑥 + 5
2

= ±√29
2

 

𝑥𝑥 =
−5 ± √29

2

Thus, the solution set is �−𝟓𝟓−√𝟐𝟐𝟐𝟐
𝟐𝟐

, −𝟓𝟓+√𝟐𝟐𝟐𝟐
𝟐𝟐

 �. 

Note: Unless specified otherwise, we are expected to state the exact solutions rather 
than their calculator approximations. Sometimes, however, especially when 
solving application problems, we may need to use a calculator to approximate 
the solutions. The reader is encouraged to check that the two decimal 
approximations of the above solutions are 

−𝟓𝟓−√𝟐𝟐𝟐𝟐
𝟐𝟐

≈ −𝟓𝟓.𝟏𝟏𝟏𝟏   and   −𝟓𝟓+√𝟐𝟐𝟗𝟗
𝟐𝟐

≈ 𝟎𝟎.𝟏𝟏𝟏𝟏 

b. In order to apply the strategy as in the previous example, we divide the equation by
the leading coefficient, 3. So, we obtain

3𝑥𝑥2 − 12𝑥𝑥 − 5 = 0 

𝑥𝑥2 − 4𝑥𝑥 − 5
3

= 0 

Then, to complete the square for 𝑥𝑥2 − 4𝑥𝑥, we may add and subtract 4. This allows us 
to rewrite the equation equivalently, with the variable part in perfect square form. 

(𝑥𝑥 − 2)2 − 4 − 5
3

= 0 

(𝑥𝑥 − 2)2 = 4 ∙ 3
3

+ 5
3

(𝑥𝑥 − 2)2 = 17
3

 

𝑥𝑥 − 2 = ±�17
3

 

𝑥𝑥 = 𝟐𝟐 ± √𝟏𝟏𝟏𝟏
√𝟑𝟑

 

Note: The final answer could be written as a single fraction as shown below: 

 𝑥𝑥 = 2√3±√17
√3

∙ √3
√3

= 𝟔𝟔±√𝟓𝟓𝟓𝟓
𝟑𝟑

 

Solving with Quadratic Formula 

Applying the completing the square procedure to the quadratic equation 

𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0, 
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with real coefficients 𝑎𝑎 ≠ 0, 𝑏𝑏, and 𝑐𝑐, allows us to develop a general formula for finding 
the solution(s) to any such equation.  

Quadratic The solution(s) to the equation 𝒂𝒂𝑥𝑥2 + 𝒃𝒃𝑥𝑥 + 𝒄𝒄 = 0, where 𝒂𝒂 ≠ 0, 𝒃𝒃, 𝒄𝒄 are real coefficients, 
Formula are given by the formula 

𝒙𝒙𝟏𝟏,𝟐𝟐 =
−𝒃𝒃 ± √𝒃𝒃𝟐𝟐 − 𝟒𝟒𝒂𝒂𝒄𝒄

𝟐𝟐𝒂𝒂

Here 𝒙𝒙𝟏𝟏,𝟐𝟐 denotes the two solutions, 𝒙𝒙𝟏𝟏 = −𝒃𝒃 + �𝒃𝒃𝟐𝟐−𝟒𝟒𝒂𝒂𝒄𝒄
𝟐𝟐𝒂𝒂

, and 𝒙𝒙𝟐𝟐 = −𝒃𝒃 − �𝒃𝒃𝟐𝟐−𝟒𝟒𝒂𝒂𝒄𝒄
𝟐𝟐𝒂𝒂

. 

First, since 𝑎𝑎 ≠ 0, we can divide the equation 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 by 𝑎𝑎. So, the equation to 
solve is 

𝑥𝑥2 +
𝑏𝑏
𝑎𝑎
𝑥𝑥 +

𝑐𝑐
𝑎𝑎

= 0 

Then, we complete the square for 𝑥𝑥2 + 𝑏𝑏
𝑎𝑎
𝑥𝑥 by adding and subtracting the perfect square of

half of the middle coefficient, � 𝑏𝑏
2𝑎𝑎
�
2
. So, we obtain

𝑥𝑥2 +
𝑏𝑏
𝑎𝑎
𝑥𝑥 + �

𝑏𝑏
2𝑎𝑎
�
2

�����������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− �
𝑏𝑏

2𝑎𝑎
�
2

+
𝑐𝑐
𝑎𝑎

= 0 

�𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

− �
𝑏𝑏

2𝑎𝑎
�
2

+
𝑐𝑐
𝑎𝑎

= 0 

�𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

=
𝑏𝑏2

4𝑎𝑎2
−
𝑐𝑐
𝑎𝑎
∙

4𝑎𝑎
4𝑎𝑎

�𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

=
𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

4𝑎𝑎2

𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
= ±�

𝑏𝑏2 − 4𝑎𝑎𝑎𝑎
4𝑎𝑎2

 

𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
= ±

√𝑏𝑏2 − 4𝑎𝑎𝑎𝑎
2𝑎𝑎

and finally, 

𝒙𝒙 =
−𝒃𝒃 ± √𝒃𝒃𝟐𝟐 − 𝟒𝟒𝟒𝟒𝟒𝟒

𝟐𝟐𝟐𝟐
, 

which concludes the proof. 

Solving Quadratic Equations with the Use of the Quadratic Formula 

Using the Quadratic Formula, solve each equation, if possible. Then visualize the solutions 
graphically. 

Proof:  

QUADRATIC 
FORMULA 

𝒙𝒙𝟏𝟏,𝟐𝟐 =
−𝒃𝒃 ± √𝒃𝒃𝟐𝟐 − 𝟒𝟒𝒂𝒂𝒄𝒄

𝟐𝟐𝒂𝒂
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a. 2𝑥𝑥2 + 3𝑥𝑥 − 20 = 0 b. 3𝑥𝑥2 − 4 = 2𝑥𝑥 c. 𝑥𝑥2 − √2𝑥𝑥 + 3 = 0
a. To apply the quadratic formula, first, we identify the values of 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐. Since the

equation is in standard form, 𝑎𝑎 = 2, 𝑏𝑏 = 3, and 𝑐𝑐 = −20. The solutions are equal to

𝑥𝑥1,2 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
=
−3 ± �32 − 4 ∙ 2(−20)

2 ∙ 2
=
−3 ± √9 + 160

4

=
−3 ± 13

4 =

⎩
⎪
⎨

⎪
⎧−3 + 13

4 =
10
4 =

𝟓𝟓
𝟐𝟐

−3− 13
4 =

−16
4 = −𝟒𝟒

Thus, the solution set is �−𝟒𝟒, 𝟓𝟓
𝟐𝟐
�. 

These solutions can be seen as 𝑥𝑥-intercepts of the function 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 3𝑥𝑥 − 20, as 
shown in Figure 1.3. 

b. Before we identify the values of 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐, we need to write the given equation 3𝑥𝑥2 −
4 = 2𝑥𝑥 in standard form. After subtracting 2𝑥𝑥 from both sides of the given equation,
we obtain

3𝑥𝑥2 − 2𝑥𝑥 − 4 = 0 

Since 𝑎𝑎 = 3, 𝑏𝑏 = −2, and 𝑐𝑐 = −4, we evaluate the quadratic formula, 

𝑥𝑥1,2 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
=

2 ± �(−2)2 − 4 ∙ 3(−4)
2 ∙ 3

=
2 ± √4 + 48

6
=

2 ± √52
6

=
2 ± √4 ∙ 13

6
=

2 ± 2√13
6

=
2�1 ± √13�

6
=
𝟏𝟏 ± √𝟏𝟏𝟏𝟏

𝟑𝟑

So, the solution set is �𝟏𝟏−√𝟏𝟏𝟏𝟏
𝟑𝟑

, 𝟏𝟏+√𝟏𝟏𝟏𝟏
𝟑𝟑

�. 

We may visualize solutions to the original equation, 3𝑥𝑥2 − 4 = 2𝑥𝑥, by graphing 
functions 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 4 and 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥. The 𝑥𝑥-coordinates of the intersection 
points are the solutions to the equation 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥), and consequently to the original 

equation. As indicated in Figure 1.4, the approximations of these solutions are 1−√13
3

≈

−0.87 and  1+√13
3

≈ 1.54. 

c. Substituting 𝑎𝑎 = 1, 𝑏𝑏 = −√2, and 𝑐𝑐 = 3 into the Quadratic Formula, we obtain

𝑥𝑥1,2 =
√2 ± ��−√2�

2
− 4 ∙ 1 ∙ 3

2 ∙ 1
=
√2  ± √2− 12

2
=
√2  ± √−10

2

Since a square root of a negative number is not a real value, we have no real solutions. 
In a graphical representation, this means that the graph of the function 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − √2𝑥𝑥 + 3 never equals 0 and therefore does not cross the x-axis. See 
Figure 1.5.  

Solution 

simplify by 
factoring 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟑𝟑𝟑𝟑 − 𝟐𝟐𝟐𝟐 

4 

 

−4 2 

solutions = 
x-intercepts 

Figure 1.3 

Figure 1.4 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟒𝟒 

1 

1 

solutions = 
x-coordinates

of the 
intercepts 

𝒈𝒈(𝒙𝒙) = 𝟐𝟐𝟐𝟐 

~1.54 ~ − 0.87 

not a real 
number! 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − √𝟐𝟐𝒙𝒙 + 𝟑𝟑 

1 

1 

no real 
solutions  

Figure 1.5 
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Although there are no real solutions to the equation, there are complex solutions that 
can be simplified as in Section RD6: 

𝒙𝒙𝟏𝟏,𝟐𝟐 =
√𝟐𝟐 ± √𝟏𝟏𝟏𝟏 𝒊𝒊

𝟐𝟐

Observation: Notice that we could find information about the solutions in Example 3c 
just by evaluating the radicand 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎. Since this radicand was negative, 
we concluded that there was no real solution to the given equation as a root 
of a negative number is not a real number. There was no need to evaluate 
the whole Quadratic Formula to determine the nature of the solutions. 

So, the radicand in the Quadratic Formula carries important information about the number 
and nature of roots. Because of it, this radicand earned a special name, the discriminant. 

Definition 1.1 The radicand 𝒃𝒃𝟐𝟐 − 𝟒𝟒𝒂𝒂𝒄𝒄 in the Quadratic Formula is called the discriminant and it is 
denoted by ∆. 

Notice that in terms of ∆, the Quadratic Formula takes the form 

Observing the behaviour of the expression √∆ allows us to classify the number and type of 
solutions (roots) of a quadratic equation with rational coefficients.  

Characteristics of Roots (Solutions) Depending on the Discriminant 

Suppose 𝒂𝒂𝑥𝑥2 + 𝒃𝒃𝑥𝑥 + 𝒄𝒄 = 0 has rational coefficients 𝒂𝒂 ≠ 0, 𝒃𝒃, 𝒄𝒄, and ∆ = 𝒃𝒃𝟐𝟐 − 𝟒𝟒𝒂𝒂𝒄𝒄. 

 If ∆ < 𝟎𝟎, then the equation has two complex conjugate solutions, −𝒃𝒃−�|∆| 𝒊𝒊
𝟐𝟐𝒂𝒂

and 
−𝒃𝒃+�|∆| 𝒊𝒊

𝟐𝟐𝒂𝒂
, as �𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is an imaginary number. 

 If ∆ = 𝟎𝟎, then the equation has one rational solution, −𝒃𝒃
𝟐𝟐𝒂𝒂

. 

 If ∆ > 𝟎𝟎, then the equation has two real solutions, −𝒃𝒃−√∆
𝟐𝟐𝒂𝒂

 and −𝒃𝒃+√∆
𝟐𝟐𝒂𝒂

. 
These solutions are
- irrational, if ∆ is not a perfect square number
- rational, if ∆ is a perfect square number (as �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

In addition, if ∆ ≥ 𝟎𝟎 is a perfect square number, then the equation could be solved 
by factoring. 

𝒙𝒙𝟏𝟏,𝟐𝟐 =
−𝒃𝒃 ± √∆

𝟐𝟐𝒂𝒂
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Determining the Number and Type of Solutions of a Quadratic Equation 

Using the discriminant, determine the number and type of solutions of each equation 
without solving the equation. If the equation can be solved by factoring, show the factored 
form of the trinomial. 

a. 2𝑥𝑥2 + 7𝑥𝑥 − 15 = 0 b. 4𝑥𝑥2 − 12𝑥𝑥 + 9 = 0

c. 3𝑥𝑥2 − 𝑥𝑥 + 1 = 0 d. 2𝑥𝑥2 − 7𝑥𝑥 + 2 = 0

a. ∆ = 72 − 4 ∙ 2 ∙ (−15) = 49 + 120 = 169

Since 169 is a perfect square number, the equation has two rational solutions and it
can be solved by factoring. Indeed, 2𝑥𝑥2 + 7𝑥𝑥 − 15 = (2𝑥𝑥 − 3)(𝑥𝑥 + 5).

b. ∆ = (−12)2 − 4 ∙ 4 ∙ 9 = 144 − 144 = 0

∆ = 0 indicates that the equation has one rational solution and it can be solved by
factoring. Indeed, the expression 4𝑥𝑥2 − 12𝑥𝑥 + 9 is a perfect square, (2𝑥𝑥 − 3)2.

c. ∆ = (−1)2 − 4 ∙ 3 ∙ 1 = 1 − 12 = −11

Since ∆ < 0, the equation has two complex conjugate solutions and therefore it
cannot be solved by factoring.

d. ∆ = (−7)2 − 4 ∙ 2 ∙ 2 = 49 − 16 = 33

Since ∆ > 0 but is not a perfect square number, the equation has two real solutions
but it cannot be solved by factoring.

Solving Equations Equivalent to Quadratic 

Solve each equation. 

a. 2 + 7
𝑥𝑥

= 5
𝑥𝑥2

 b. 1− 2𝑥𝑥2 = (𝑥𝑥 + 2)(𝑥𝑥 − 1)

a. This is a rational equation, with the set of ℝ ∖ {0} as its domain. To solve it, we
multiply the equation by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑥𝑥2. This brings us to a quadratic equation

2𝑥𝑥2 + 7𝑥𝑥 = 5 
or equivalently 

2𝑥𝑥2 + 7𝑥𝑥 − 5 = 0, 

which can be solved by following the Quadratic Formula for 𝑎𝑎 = 2, 𝑏𝑏 = 7, and 𝑐𝑐 =
−5. So, we have

Solution 

Solution 
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𝑥𝑥1,2 =
−7 ± �72 − 4 ∙ 2(−5)

2 ∙ 2
=
−7 ± √49 + 40

4
=
−𝟕𝟕 ± √𝟖𝟖𝟖𝟖

𝟒𝟒

Since both solutions are in the domain, the solution set is �−𝟕𝟕−√𝟖𝟖𝟖𝟖
𝟒𝟒

,−𝟕𝟕+√𝟖𝟖𝟖𝟖
𝟒𝟒

�. 

b. To solve 1− 2𝑥𝑥2 = (𝑥𝑥 + 2)(𝑥𝑥 − 1), we simplify the equation first and rewrite it in
standard form. So, we have

1 − 2𝑥𝑥2 = 𝑥𝑥2 + 𝑥𝑥 − 2 

−3𝑥𝑥2 − 𝑥𝑥 + 3 = 0

3𝑥𝑥2 + 𝑥𝑥 − 3 = 0

Since the left side of this equation is not factorable, we may use the Quadratic Formula. 
So, the solutions are 

𝑥𝑥1,2 =
−1 ± �12 − 4 ∙ 3(−3)

2 ∙ 3
=
−1 ± √1 + 36

6
=
−𝟏𝟏 ± √𝟑𝟑𝟑𝟑

𝟔𝟔
. 

Q.1  Exercises

True or False. 

1. A quadratic equation is an equation that can be written in the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0, where 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are
any real numbers.

2. If the graph of 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 intersects the 𝑥𝑥-axis twice, the equation 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 has two
solutions.

3. If the equation 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 has no real solution, the graph of 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 does not intersect
the 𝑥𝑥-axis.

4. The Quadratic Formula cannot be used to solve the equation 𝑥𝑥2 − 5 = 0 because the equation does not
contain a linear term.

5. The solution set for the equation 𝑥𝑥2 = 16 is {4}.

6. To complete the square for 𝑥𝑥2 + 𝑏𝑏𝑏𝑏, we add �𝑏𝑏
2
�
2
.

7. If the discriminant is positive, the equation can be solved by factoring.

For each function 𝑓𝑓, 
a) graph 𝑓𝑓(𝑥𝑥) using a table of values;
b) find the x-intercepts of the graph;
c) solve the equation 𝑓𝑓(𝑥𝑥) = 0 by factoring and compare these solutions to the x-intercepts of the graph.
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8. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 3𝑥𝑥 + 2 9. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 − 3 10. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥 + 𝑥𝑥(𝑥𝑥 − 2)

11. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 − 𝑥𝑥(𝑥𝑥 − 3) 12. 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 − 4𝑥𝑥 − 3 13. 𝑓𝑓(𝑥𝑥) = −1
2

(2𝑥𝑥2 + 5𝑥𝑥 − 12) 

Solve each equation using the square root property. 

14. 𝑥𝑥2 = 49 15. 𝑥𝑥2 = 32 16. 𝑎𝑎2 − 50 = 0

17. 𝑛𝑛2 − 24 = 0 18. 3𝑥𝑥2 − 72 = 0 19. 5𝑦𝑦2 − 200 = 0

20. (𝑥𝑥 − 4)2 = 64 21. (𝑥𝑥 + 3)2 = 16 22. (3𝑛𝑛 − 1)2 = 7

23. (5𝑡𝑡 + 2)2 = 12 24. 𝑥𝑥2 − 10𝑥𝑥 + 25 = 45 25. 𝑦𝑦2 + 8𝑦𝑦 + 16 = 44

26. 4𝑎𝑎2 + 12𝑎𝑎 + 9 = 32 27. 25(𝑦𝑦 − 10)2 = 36 28. 16(𝑥𝑥 + 4)2 = 81

29. (4𝑥𝑥 + 3)2 = −25 30. (3𝑛𝑛 − 2)(3𝑛𝑛 + 2) = −5 31. 2𝑥𝑥 − 1 = 18
2𝑥𝑥−1

Solve each equation using the completing the square procedure. 

32. 𝑥𝑥2 + 12𝑥𝑥 = 0 33. 𝑦𝑦2 − 3𝑦𝑦 = 0 34. 𝑥𝑥2 − 8𝑥𝑥 + 2 = 0

35. 𝑛𝑛2 + 7𝑛𝑛 = 3𝑛𝑛 − 4 36. 𝑝𝑝2 − 4𝑝𝑝 = 4𝑝𝑝 − 16 37. 𝑦𝑦2 + 7𝑦𝑦 − 1 = 0

38. 2𝑥𝑥2 − 8𝑥𝑥 = −4 39. 3𝑎𝑎2 + 6𝑎𝑎 = −9 40. 3𝑦𝑦2 − 9𝑦𝑦 + 15 = 0

41. 5𝑥𝑥2 − 60𝑥𝑥 + 80 = 0 42. 2𝑡𝑡2 + 6𝑡𝑡 − 10 = 0 43. 3𝑥𝑥2 + 2𝑥𝑥 − 2 = 0

44. 2𝑥𝑥2 − 16𝑥𝑥 + 25 = 0 45. 9𝑥𝑥2 − 24𝑥𝑥 = −13 46. 25𝑛𝑛2 − 20𝑛𝑛 = 1

47. 𝑥𝑥2 − 4
3
𝑥𝑥 = −1

9
 48. 𝑥𝑥2 + 5

2
𝑥𝑥 = −1 49. 𝑥𝑥2 − 2

5
𝑥𝑥 − 3 = 0 

In problems 50-51, find all values of 𝑥𝑥 such that 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) for the given functions 𝑓𝑓 and 𝑔𝑔. 

50. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 9  and  𝑔𝑔(𝑥𝑥) = 4𝑥𝑥 − 6 51. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 5𝑥𝑥  and  𝑔𝑔(𝑥𝑥) = −𝑥𝑥 + 14

52. Explain the errors in the following solutions of the equation 5𝑥𝑥2 − 8𝑥𝑥 + 2 = 0:

a. 𝑥𝑥 = 8 ± √−82−4∙5∙2
2∙8

= 8 ± √64−40
16

= 8 ± √24
16

= 8 ± 2√6
16

= 𝟏𝟏
𝟐𝟐

± 𝟐𝟐√𝟔𝟔 

b. 𝑥𝑥 = 8 ± �(−8)2−4∙5∙2
2∙8

= 8 ± √64−40
16

= 8 ± √24
16

= 8 ± 2√6
16

= �
10√6
16

= 𝟓𝟓√𝟔𝟔
𝟖𝟖

6√6
16

= 𝟑𝟑√𝟔𝟔
𝟖𝟖

Solve each equation with the aid of the Quadratic Formula, if possible. Illustrate your solutions graphically, 
using a table of values. 

53. 𝑥𝑥2 + 3𝑥𝑥 + 2 = 0 54. 𝑦𝑦2 − 2 = 𝑦𝑦 55. 𝑥𝑥2 + 𝑥𝑥 = −3

56. 2𝑦𝑦2 + 3𝑦𝑦 = −2 57. 𝑥𝑥2 − 8𝑥𝑥 + 16 = 0 58. 4𝑛𝑛2 + 1 = 4𝑛𝑛

𝒙𝒙 =
−𝒃𝒃 ± √𝒃𝒃𝟐𝟐 − 𝟒𝟒𝟒𝟒𝟒𝟒

𝟐𝟐𝟐𝟐
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 Give the exact and approximate solutions up to two 
decimal places. 

59. 𝑎𝑎2 − 4 = 2𝑎𝑎 60. 2 − 2𝑥𝑥 = 3𝑥𝑥2 61. 0.2𝑥𝑥2 + 𝑥𝑥 + 0.7 = 0

62. 2𝑡𝑡2 − 4𝑡𝑡 + 2 = 3 63. 𝑦𝑦2 + 𝑦𝑦
3

= 1
6
 64. 𝑥𝑥2

4
− 𝑥𝑥

2
= 1 

65. 5𝑥𝑥2 = 17𝑥𝑥 − 2 66. 15𝑦𝑦 = 2𝑦𝑦2 + 16 67. 6𝑥𝑥2 − 8𝑥𝑥 = 2𝑥𝑥 −3

Use the discriminant to determine the number and type of solutions for each equation. Also, without solving, 
decide whether the equation can be solved by factoring or whether the quadratic formula should be used.  

68. 3𝑥𝑥2 − 5𝑥𝑥 − 2 = 0 69. 4𝑥𝑥2 = 4𝑥𝑥 + 3 70. 𝑥𝑥2 + 3 = −2√3𝑥𝑥

71. 4𝑦𝑦2 − 28𝑦𝑦 + 49 = 0 72. 3𝑦𝑦2 − 10𝑦𝑦 + 15 = 0 73. 9𝑥𝑥2 + 6𝑥𝑥 = −1

In problems 74-76, find all values of constant k, so that each equation will have exactly one rational solution. 

74. 𝑥𝑥2 + 𝑘𝑘𝑘𝑘 + 49 = 0 75. 9𝑦𝑦2 − 30𝑦𝑦 + 𝑘𝑘 = 0 76. 𝑘𝑘𝑥𝑥2 + 8𝑥𝑥 + 1 = 0

77. Suppose that one solution of a quadratic equation with integral coefficients is irrational. Assuming that the
equation has two solutions, can the other solution be a rational number? Justify your answer.

Solve each equation using any algebraic method. State the solutions in their exact form. 

78. −2𝑥𝑥(𝑥𝑥 + 2) = −3 79. (𝑥𝑥 + 2)(𝑥𝑥 − 4) = 1 80. (𝑥𝑥 + 2)(𝑥𝑥 + 6) = 8

81. (2𝑥𝑥 − 3)2 = 8(𝑥𝑥 + 1) 82. (3𝑥𝑥 + 1)2 = 2(1− 3𝑥𝑥) 83. 2𝑥𝑥2 − (𝑥𝑥 + 2)(𝑥𝑥 − 3) = 12

84. (𝑥𝑥 − 2)2 + (𝑥𝑥 + 1)2 = 0 85. 1 + 2
𝑥𝑥

+ 5
𝑥𝑥2

= 0 86. 𝑥𝑥 = 2(𝑥𝑥+3)
𝑥𝑥+5

87. 2 + 1
𝑥𝑥

= 3
𝑥𝑥2

88. 3
𝑥𝑥

+ 𝑥𝑥
3

= 5
2
  89. 1

𝑥𝑥
+ 1

𝑥𝑥+4
= 1

7
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Q2 Applications of Quadratic Equations 

Some polynomial, rational or even radical equations are quadratic in form. As such, they 
can be solved using techniques described in the previous section. For instance, the rational 
equation  1

𝑥𝑥2
+ 1

𝑥𝑥
− 6 = 0 is quadratic in form because if we replace 1

𝑥𝑥
 with a single variable, 

say 𝑎𝑎, then the equation becomes quadratic, 𝑎𝑎2 + 𝑎𝑎 − 6 = 0. In this section, we explore 
applications of quadratic equations in solving equations quadratic in form as well as solving 
formulas containing variables in the second power.  

We also revisit application problems that involve solving quadratic equations. Some of the application problems 
that are typically solved with the use of quadratic or polynomial equations were discussed in Sections F4 and RT6. 
However, in the previous sections, the equations used to solve such problems were all possible to solve by 
factoring. In this section, we include problems that require the use of methods other than factoring. 

Equations Quadratic in Form 

Definition 2.1 A nonquadratic equation is referred to as quadratic in form or reducible to quadratic if 
it can be written in the form 

𝑎𝑎𝒖𝒖2 + 𝑏𝑏𝒖𝒖+ 𝑐𝑐 = 0, 

where 𝑎𝑎 ≠ 0 and 𝒖𝒖 represents any algebraic expression. 

Equations quadratic in form are usually easier to solve by using strategies for solving the 
related quadratic equation 𝑎𝑎𝒖𝒖2 + 𝑏𝑏𝒖𝒖+ 𝑐𝑐 = 0 for the expression 𝒖𝒖, and then solving for the 
original variable, as shown in the example below. 

Solving Equations Quadratic in Form 

Solve each equation.  

a. (𝑥𝑥2 − 1)2 − (𝑥𝑥2 − 1) = 2 b. 𝑥𝑥 − 3√𝑥𝑥 = 10

c. 1
(𝑎𝑎+2)2

+ 1
𝑎𝑎+2

− 6 = 0

a. First, observe that the expression 𝑥𝑥2 − 1 appears in the given equation in the first and
second power. So, it may be useful to replace 𝑥𝑥2 − 1 with a new variable, for example
𝑢𝑢. After this substitution, the equation becomes quadratic,

𝑢𝑢2 − 𝑢𝑢 = 2, 
and can be solved via factoring 

𝑢𝑢2 − 𝑢𝑢 − 2 = 0 

(𝑢𝑢 − 2)(𝑢𝑢 + 1) = 0 

𝑢𝑢 = 2  or  𝑢𝑢 = −1 

Since we need to solve the original equation for 𝑥𝑥, not for 𝑢𝑢, we replace 𝑢𝑢 back with 
𝑥𝑥2 − 1. This gives us 

Solution 

This can be any 
letter, as long as it is 

different than the 
original variable. 
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𝑥𝑥2 − 1 = 2   or   𝑥𝑥2 − 1 = −1 

𝑥𝑥2 = 3     or        𝑥𝑥2 = 0 

 𝑥𝑥 = ±√3     or     𝑥𝑥 = 0 

Thus, the solution set is �−√𝟑𝟑,𝟎𝟎,√𝟑𝟑�. 

b. If we replace √𝑥𝑥 with, for example, 𝑎𝑎, then 𝑥𝑥 = 𝑎𝑎2, and the equation becomes

𝑎𝑎2 − 3𝑎𝑎 = 10, 

which can be solved by factoring 

𝑎𝑎2 − 3𝑎𝑎 − 10 = 0 

(𝑎𝑎 + 2)(𝑎𝑎 − 5) = 0 

𝑎𝑎 = −2  or  𝑎𝑎 = 5 

After replacing 𝑎𝑎 back with √𝑥𝑥, we have 

√𝑥𝑥 = −2  or  √𝑥𝑥 = 5.

The first equation, √𝑥𝑥 = −2, does not give us any solution as the square root cannot 
be negative. After squaring both sides of the second equation, we obtain 𝑥𝑥 = 25. So, 
the solution set is {𝟐𝟐𝟐𝟐}.  

c. The equation  1
(𝑎𝑎+2)2

+ 1
𝑎𝑎+2

− 6 = 0  can be solved as any other rational equation, by

clearing the denominators via multiplying by the 𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑎𝑎 + 2)2. However, it can
also be seen as a quadratic equation as soon as we replace 1

𝑎𝑎+2
 with, for example, 𝑥𝑥.

By doing so, we obtain
𝑥𝑥2 + 𝑥𝑥 − 6 = 0, 

which after factoring 
(𝑥𝑥 + 3)(𝑥𝑥 − 2) = 0, 

gives us 𝑥𝑥 = −3  or  𝑥𝑥 = 2 

Again, since we need to solve the original equation for 𝑎𝑎, we replace 𝑥𝑥 back with 1
𝑎𝑎+2

. 
This gives us 

1
𝑎𝑎+2

= −3   or 1
𝑎𝑎+2

= 2 

𝑎𝑎 + 2 = 1
−3

 or  𝑎𝑎 + 2 = 1
2
 

𝑎𝑎 = −7
3
  or  𝑎𝑎 = − 3

2
 

Since both values are in the domain of the original equation, which is ℝ ∖ {0}, then the 
solution set is �− 7

3
,−3

2
�. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

Remember to use a 
different letter than 
the variable in the 
original equation. 
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Solving Formulas 

When solving formulas for a variable that appears in the second power, we use the same 
strategies as in solving quadratic equations. For example, we may use the square root 
property or the quadratic formula. 

Solving Formulas for a Variable that Appears in the Second Power 

Solve each formula for the given variable. 

a. 𝐸𝐸 = 𝑚𝑚𝑐𝑐2,   for  𝑐𝑐 b. 𝑁𝑁 = 𝑘𝑘2−3𝑘𝑘
2

,   for 𝑘𝑘 

a. To solve for 𝑐𝑐, first, we reverse the multiplication by 𝑚𝑚 via the division by 𝑚𝑚. Then,
we reverse the operation of squaring by taking the square root of both sides of the
equation.

𝐸𝐸 = 𝑚𝑚𝑐𝑐2 
𝐸𝐸
𝑚𝑚

= 𝑐𝑐2 

Then, we reverse the operation of squaring by taking the square root of both sides of 
the equation. So, we have 

�𝐸𝐸
𝑚𝑚

= �𝑐𝑐2, 

and therefore 

  𝒄𝒄 = ±�𝑬𝑬
𝒎𝒎

 

b. Observe that the variable 𝑘𝑘 appears in the formula 𝑁𝑁 = 𝑘𝑘2−3𝑘𝑘
2

 in two places. Once in
the first and once in the second power of 𝑘𝑘. This means that we can treat this formula
as a quadratic equation with respect to 𝑘𝑘 and solve it with the aid of the quadratic
formula. So, we have

𝑁𝑁 =
𝑘𝑘2 − 3𝑘𝑘

2
2𝑁𝑁 = 𝑘𝑘2 − 3𝑘𝑘 

𝒌𝒌2 − 3𝒌𝒌 − 2𝑁𝑁 = 0 

Substituting 𝑎𝑎 = 1, 𝑏𝑏 = −3, and 𝑐𝑐 = −2𝑁𝑁 to the quadratic formula, we obtain 

𝒌𝒌𝟏𝟏,𝟐𝟐 =
−(−3) ± �(−3)2 − 4 ∙ 1 ∙ (−2𝑁𝑁)

2
=
𝟑𝟑 ± √𝟗𝟗 + 𝟖𝟖𝟖𝟖

𝟐𝟐

Solution 

Remember that 
√𝒄𝒄𝟐𝟐 = |𝒄𝒄|, so we
use the ± sign in 

place of | |. 
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Application Problems 

Many application problems require solving quadratic equations. Sometimes this can be 
achieved via factoring, but often it is helpful to use the quadratic formula. 

Solving a Distance Problem with the Aid of the Quadratic Formula 

Three towns 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 are positioned as shown in the accompanying figure. The roads at 
𝐵𝐵 form a right angle. The towns 𝐴𝐴 and 𝐶𝐶 are connected by a straight road as well. The 
distance from 𝐴𝐴 to 𝐵𝐵 is 7 kilometers less than the distance from 𝐵𝐵 to 𝐶𝐶. The distance from 
𝐴𝐴 to 𝐶𝐶 is 20 km. Approximate the remaining distances between the towns up to the tenth of 
a kilometer. 

Since the roads between towns form a right triangle, we can employ the Pythagorean 
equation 

𝐴𝐴𝐴𝐴2 = 𝐴𝐴𝐴𝐴2 + 𝐵𝐵𝐵𝐵2 

Suppose that 𝐵𝐵𝐵𝐵 = 𝑥𝑥. Then 𝐴𝐴𝐴𝐴 = 𝑥𝑥 − 7, and we have 

202 = (𝑥𝑥 − 7)2 + 𝑥𝑥2 

400 = 𝑥𝑥2 − 14𝑥𝑥 + 49 + 𝑥𝑥2 

2𝑥𝑥2 − 14𝑥𝑥 − 351 = 0 

Applying the quadratic formula, we obtain 

𝑥𝑥1,2 =
14 ± √142 + 4 ∙ 2 ∙ 351

4
=

14 ± √196 + 2808
4

=
14 ± √3004

4
≈ 17.2 𝑜𝑜𝑜𝑜 − 10.2 

Since 𝑥𝑥 represents a distance, it must be positive. So, the only solution is 𝑥𝑥 ≈ 17.2 km. 
Thus, the distance 𝑩𝑩𝑩𝑩 ≈ 𝟏𝟏𝟏𝟏.𝟐𝟐 km and hence 𝑨𝑨𝑨𝑨 ≈ 17.2 − 7 = 𝟏𝟏𝟏𝟏.𝟐𝟐 km. 

Solving a Geometry Problem with the Aid of the Quadratic Formula 

A city designated a 24 m by 40 m rectangular area for a playground with a sidewalk of 
uniform width around it. The playground itself is using 2

3
 of the original rectangular area. 

To the nearest centimeter, what is the width of the sidewalk? 

To visualize the situation, we may draw a diagram as below. 

Solution 

Solution 

← −− − − −   𝟒𝟒𝟒𝟒  − − − − − →  

←
−
−

  𝟐𝟐
𝟐𝟐 

 −
−

 →
  

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 𝑥𝑥 

𝑨𝑨 

𝑩𝑩 
𝑪𝑪 

Imagery @2018 TerraMetrics, 
Map data @2018 Google 
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Suppose 𝑥𝑥 represents the width of the sidewalk. Then, the area of the playground (the green 
area) can be expressed as (40 − 2𝑥𝑥)(24 − 2𝑥𝑥). Since the green area is 2

3
 of the original 

rectangular area, we can form the equation 

(40 − 2𝑥𝑥)(24 − 2𝑥𝑥) =  
2
3

(40 ∙ 24) 

To solve it, we may want to lower the coefficients by dividing both sides of the equation 
by 4 first. This gives us 

2(20 − 𝑥𝑥) ∙ 2(12 − 𝑥𝑥)
4

=  
2
3
∙

(40 ∙ 24)
4

(20 − 𝑥𝑥)(12 − 𝑥𝑥) =  160 

240 − 32𝑥𝑥 + 𝑥𝑥2 = 160 

𝑥𝑥2 − 32𝑥𝑥 + 80 =  0, 

which can be solved using the Quadratic Formula: 

𝑥𝑥1,2 =
32 ± �(−32)2 − 4 ∙ 80

2
=

32 ± √704
2

≈
32 ± 8√11

2

= 16 ± 4√11 ≈ �29.27
2.73

Thus, the sidewalk is approximately 𝟐𝟐.𝟕𝟕𝟕𝟕 meters wide. 

Solving a Motion Problem That Requires the Use of the Quadratic Formula 

The Columbia River flows at a rate of 2 mph for the length of a popular boating route. In 
order for a boat to travel 3 miles upriver and return in a total of 4 hours, how fast must the 
boat be able to travel in still water? 

Suppose the rate of the boat moving in still water is 𝑟𝑟. Then, 𝑟𝑟 − 2 represents the rate of 
the boat moving upriver and 𝑟𝑟 + 2 represents the rate of the boat moving downriver. We 
can arrange these data in the table below. 

We fill the time-column by following the 
formula 𝑇𝑇 = 𝐷𝐷

𝑅𝑅
. 

By adding the times needed for traveling 
upriver and downriver, we form the rational 
equation 

 

which, after multiplying by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟𝑟2 − 4, becomes a quadratic equation. 

3(𝑟𝑟 + 2) + 3(𝑟𝑟 − 2) = 4(𝑟𝑟2 − 4) 

  𝑹𝑹    ∙  𝑻𝑻 =   𝑫𝑫 

upriver 𝑟𝑟 − 2 
3

𝑟𝑟 − 2
3 

downriver 𝑟𝑟 + 2 
3

𝑟𝑟 + 2
3 

total 4 

Solution 

The width 𝒙𝒙 must be smaller 
than 12, so this value is too 

large to be considered. 

8 10 

3
𝑟𝑟 − 2

+
3

𝑟𝑟 + 2
= 4, 
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3𝑟𝑟 + 6 + 3𝑟𝑟 − 6 = 4𝑟𝑟2 − 16 

0 = 4𝑟𝑟2 − 6𝑟𝑟 − 16 

0 = 2𝑟𝑟2 − 3𝑟𝑟 − 8 

Using the Quadratic Formula, we have 

𝑟𝑟1,2 =
3 ± �(−3)2 − 4 ∙ 2 ∙ (−8)

2 ∙ 2
=

3 ± √9 + 64
4

=
3 ± √73

4
≈ � 2.9

−1.4

Since the rate cannot be negative, the boat moves in still water at approximately 𝟐𝟐.𝟗𝟗 mph. 

Solving a Work Problem That Requires the Use of the Quadratic Formula 

Krista and Joanna work in the same office. Krista can file the daily office documents in 1 
hour less time than Joanna can. Working together, they can do the job in 1 hr 45 min. To 
the nearest minute, how long would it take each person working alone to file these 
documents? 

Suppose the time needed for Joanna to complete the job is 𝑡𝑡, in hours. Then, 𝑡𝑡 − 1 
represents the time needed for Krista to complete the same job. Since we keep time in hours, 
we need to convert 1 hr 45 min  into 13

4 hr = 74 hr. Now, we can arrange the given data in a 
table, as below. 

We fill the rate-column by following the 
formula 𝑅𝑅 = 𝐽𝐽𝐽𝐽𝐽𝐽

𝑇𝑇
. 

By adding the rates of work for each 
person, we form the rational equation 

which, after multiplying by the 𝐿𝐿𝐿𝐿𝐿𝐿 =
7𝑡𝑡(𝑡𝑡 − 1), becomes a quadratic equation. 

7(𝑡𝑡 − 1) + 7𝑡𝑡 = 4(𝑡𝑡2 − 𝑡𝑡) 

7𝑡𝑡 − 7 + 7𝑡𝑡 = 4𝑡𝑡2 − 4𝑡𝑡 

0 = 4𝑡𝑡2 − 18𝑡𝑡 + 7 

Using the Quadratic Formula, we have 

𝑡𝑡1,2 =
18 ± �(−18)2 − 4 ∙ 4 ∙ 7

2 ∙ 4
=

18 ± √212
8

=
18 ± 2√53

8
=

9 ± √53
4

≈ �4.07
0.43

Since the time needed for Joanna cannot be shorter than 1 hr, we reject the 0.43 possibility. 
So, working alone, Joanna requires approximately 4.07 hours ≈ 4 hours 4 minutes, while 
Krista can do the same job in approximately 3.07 hours ≈ 3 hours 4 minutes. 

  𝑹𝑹    ∙  𝑻𝑻 =   𝑱𝑱𝑱𝑱𝑱𝑱 

Joanna 1
𝑡𝑡

𝑡𝑡 1 

Krista 
1

𝑡𝑡 − 1
𝑡𝑡 − 1 1 

together 4
7

7
4

1 

Solution 

1
𝑡𝑡

+
1

𝑡𝑡 − 1
=

4
7

, 
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Solving a Projectile Problem Using a Quadratic Function 

A ball is projected upward from the top of a 96-ft building at 32 ft/sec. Its height above the 
ground, ℎ, in feet, can be modelled by the function ℎ(𝑡𝑡)  =  −16𝑡𝑡2  +  32𝑡𝑡 +  96, where 𝑡𝑡 
is the time in seconds after the ball was projected. To the nearest tenth of a second, when 
does the ball hit the ground? 

The ball hits the ground when its height ℎ above the ground is equal to zero. So, we look 
for the solutions to the equation 

ℎ(𝑡𝑡)  =  0 
which is equivalent to 

−16𝑡𝑡2  +  32𝑡𝑡 +  96 = 0

Before applying the Quadratic Formula, we may want to lower the coefficients by dividing 
both sides of the equation by −16. So, we have 

𝑡𝑡2 − 2𝑡𝑡 − 6 = 0 
and 

𝑡𝑡1,2 =
2 ± �(−2)2 + 4 ∙ 6

2
=

2 ± √28
2

=
2 ± 2√7

2
= 1 ± √7 ≈ � 3.6

−1.6

Thus, the ball hits the ground in about 3.6 seconds. 

Q.2  Exercises

1. Discuss the validity of the following solution to the equation � 1
𝑥𝑥−2

�
2
− 1

𝑥𝑥−2
− 2 = 0:

Since this equation is quadratic in form, we solve the related equation  𝑎𝑎2 − 𝑎𝑎 − 2 = 0  by factoring 

(𝑎𝑎 − 2)(𝑎𝑎 + 1) = 0. 

The possible solutions are 𝑎𝑎 = 2 and 𝑎𝑎 = −1. Since 2 is not in the domain of the original equation, the 
solution set as {−1}. 

Solve each equation by treating it as a quadratic in form. 

2. 𝑥𝑥4 − 6𝑥𝑥2 + 9 = 0 3. 𝑥𝑥8 − 29𝑥𝑥4 + 100 = 0 4. 𝑥𝑥 − 10√𝑥𝑥 + 9 = 0

5. 2𝑥𝑥 − 9√𝑥𝑥 + 4 = 0 6. 𝑦𝑦−2 − 5𝑦𝑦−1 − 36 = 0 7. 2𝑎𝑎−2 + 𝑎𝑎−1 − 1 = 0

Solution 
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8. �1 + √𝑡𝑡�
2

+ �1 + √𝑡𝑡� − 6 = 0 9. �2 + √𝑥𝑥�
2
− 3�2 + √𝑥𝑥� − 10 = 0

10. (𝑥𝑥2 + 5𝑥𝑥)2 + 2(𝑥𝑥2 + 5𝑥𝑥) − 24 = 0 11. (𝑡𝑡2 − 2𝑡𝑡)2 − 4(𝑡𝑡2 − 2𝑡𝑡) + 3 = 0

12. 𝑥𝑥
2
3 − 4𝑥𝑥

1
3 − 5 = 0 13. 𝑥𝑥

2
3 + 2𝑥𝑥

1
3 − 8 = 0

14. 1 − 1
2𝑝𝑝+1

− 1
(2𝑝𝑝+1)2 = 0 15. 2

(𝑢𝑢+2)2 + 1
𝑢𝑢+2

= 3 

16. �𝑥𝑥+3
𝑥𝑥−3

�
2
− �𝑥𝑥+3

𝑥𝑥−3
� = 6 17. �𝑦𝑦

2−1
𝑦𝑦
�
2
− 4 �𝑦𝑦

2−1
𝑦𝑦
� − 12 = 0 

In problems 23-40, solve each formula for the indicated variable. 

18. 𝐹𝐹 = 𝑚𝑚𝑣𝑣2

𝑟𝑟
,  for 𝑣𝑣  19. 𝑉𝑉 = 𝜋𝜋𝑟𝑟2ℎ,  for 𝑟𝑟 20. 𝐴𝐴 = 4𝜋𝜋𝑟𝑟2,  for 𝑟𝑟 

21. 𝑉𝑉 = 1
3
𝑠𝑠2ℎ,  for 𝑠𝑠 22. 𝐹𝐹 = 𝐺𝐺𝑚𝑚1𝑚𝑚2

𝑟𝑟2
,  for 𝑟𝑟  23. 𝑁𝑁 = 𝑘𝑘𝑞𝑞1𝑞𝑞2

𝑠𝑠2
, for 𝑠𝑠 

24. 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2,  for 𝑏𝑏 25. 𝐼𝐼 = 703𝑊𝑊
𝐻𝐻2 ,  for 𝐻𝐻 26. 𝐴𝐴 = 𝜋𝜋𝑟𝑟2 + 𝜋𝜋𝜋𝜋𝜋𝜋,  for 𝑟𝑟  

27. 𝐴𝐴 = 2𝜋𝜋𝑟𝑟2 + 2𝜋𝜋𝜋𝜋ℎ,  for 𝑟𝑟 28. 𝑠𝑠 = 𝑣𝑣0𝑡𝑡 + 𝑔𝑔𝑡𝑡2

2
,  for 𝑡𝑡 29. 𝑡𝑡 = 𝑎𝑎

√𝑎𝑎2+𝑏𝑏2
,  for 𝑎𝑎 

30. 𝑃𝑃 = 𝐴𝐴
(1+𝑟𝑟)2

,  for 𝑟𝑟  31. 𝑃𝑃 = 𝐸𝐸𝐸𝐸 − 𝑅𝑅𝐼𝐼2,  for 𝐼𝐼 32. 𝑠𝑠(6𝑠𝑠 − 𝑡𝑡) = 𝑡𝑡2,  for 𝑠𝑠

33. 𝑚𝑚 = 𝑚𝑚0

�1−𝑣𝑣
2
𝑐𝑐2

,  for 𝑣𝑣, assuming that 𝑐𝑐 > 0 and 𝑚𝑚 > 0 

34. 𝑚𝑚 = 𝑚𝑚0

�1−𝑣𝑣
2
𝑐𝑐2

,  for 𝑐𝑐, assuming that 𝑣𝑣 > 0 and 𝑚𝑚 > 0 

35. 𝑝𝑝 = 𝐸𝐸2𝑅𝑅
(𝑟𝑟+𝑅𝑅)2

,  for 𝐸𝐸, assuming that (𝑟𝑟 + 𝑅𝑅) > 0 

36. The “golden” proportions have been considered visually pleasing for the past 2900 years. A rectangle with
the width 𝑤𝑤 and length 𝑙𝑙 has “golden” proportions if

𝒘𝒘
𝒍𝒍

=
𝒍𝒍

𝒘𝒘 + 𝒍𝒍
. 

Solve this formula for 𝒍𝒍. Then, find the value of the golden ratio 𝒍𝒍
𝒘𝒘

 up to three decimal places.

Answer each question. 

37. A boat moves 𝑟𝑟 km/h in still water. If the rate of the current is 𝑐𝑐 km/h,
a. give an expression for the rate of the boat moving upstream;
b. give an expression for the rate of the boat moving downstream.

38. a. Vivian marks a class test in 𝑛𝑛 hours.  Give an expression representing Vivian’s rate of marking, in the
number of marked tests per hour. 

b. How many tests will she have marked in ℎ hours?
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Solve each problem. 

39. Find the exact length of each side of the triangle.

40. Two cruise ships leave a port at the same time, but they move at different rates. The
faster ship is heading south, and the slower one is heading east. After a few hours,
they are 200 km apart. If the faster ship went 40 km farther than the slower one, how
far did each ship travelled?

41. The length of a rectangular area carpet is 2 ft more than twice the width. Diagonally, the carpet measures 13
ft. Find the dimensions of the carpet.

42. The legs of a right triangle with 26 cm long hypotenuse differ by 14 cm. Find the lengths of the legs.

43. A 12-ft ladder is tilting against a house. The top of the ladder is 4 ft further from the ground than
the bottom of the ladder is from the house. To the nearest inch, how high does the ladder reach?

44. Two cars leave an intersection, one heading south and the other heading
east. In one hour the cars are 50 kilometers apart. If the faster car went
10 kilometers farther than the slower one, how far did each car
travelled?

45. The length and width of a computer screen differ by 4 inches. Find the dimensions of the screen, knowing
that its area is 117 square inches.

46. The length of an American flag is 1 inch shorter than twice the width. If the area of this flag is 190 square
inches, find the dimensions of the flag.

47. The length of a Canadian flag is twice the width. If the area of this flag is 100 square meters, find the exact
dimensions of the flag.

48. Thales Theorem states that corresponding sides of similar
triangles are proportional. The accompanying diagram shows two
similar triangles, ⊿𝐴𝐴𝐴𝐴𝐴𝐴 and ⊿𝐷𝐷𝐷𝐷𝐷𝐷. Given the information in the
diagram, find the length 𝐴𝐴𝐴𝐴. 

Solve each problem. 

49. Sonia bought an area carpet for her 12 ft by 18 ft room. The carpet covers 135 ft2, and
when centered in the room, it leaves a strip of the bare floor of uniform width around
the edges of the room. How wide is this strip?

50. Park management plans to create a rectangular 14 m by 20 m flower garden with a
sidewalk of uniform width around the perimeter of the garden. There are enough funds to install 152 m2 of a
brick sidewalk. Find the width of the sidewalk.

51. Squares of equal area are cut from each corner of a 46 cm by 68 cm rectangular
cardboard. Obtained this way flaps are folded up to create an open box with the
area of the base equal to 968 cm2. What is the height of the box?

𝑥𝑥 
50 𝑘𝑘𝑘𝑘 

𝑥𝑥 + 10 

𝑆𝑆 

𝐸𝐸 

18 𝑓𝑓𝑓𝑓 

12
 𝑓𝑓
𝑓𝑓 

𝑥𝑥 + 3 

𝑥𝑥 + 10 

𝑥𝑥 

𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑥𝑥 + 40 

𝑆𝑆 

𝐸𝐸 

200 

𝑥𝑥 

𝑥𝑥
+

4 12 

𝐴𝐴 

𝑥𝑥 + 4 2𝑥𝑥 + 2 

𝐵𝐵 

𝐶𝐶 

𝐷𝐷 

3 𝑥𝑥 − 1 
𝐸𝐸 

𝐹𝐹 

68 𝑐𝑐𝑐𝑐 

𝑥𝑥 
𝑥𝑥 

46
 𝑐𝑐
𝑐𝑐

 

968 𝑐𝑐𝑐𝑐2 
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52. The outside measurements of a picture frame are 22 cm and 28 cm. If the area of the exposed picture is 301
cm2, find the width of the frame.

53. The length of a rectangle is one centimeter shorter than twice the width. The rectangle shares its longer side
with a square of 169 cm2 area. What are the dimensions of the rectangle?

54. A rectangular piece of cardboard is 15 centimeters longer than it is wide. 100 cm2 squares are removed from
each corner of the cardboard. Folding up the established flaps creates an open box of 13.5-litre volume. Find
the dimensions of the original piece of cardboard. (Hint: 1 litre = 1000 cm2)

55. Karin travelled 420 km by her motorcycle to visit a friend. When planning the return trip by the same road,
she calculated that her driving time could be 1 hour shorter if she increases her average speed by 10 km/h.
On average, how fast was she driving to her friend?

56. An average, an Airbus A380 flies 80 km/h faster than a Boeing 787 Dreamliner. Suppose an Airbus A380
flew 2600 km in half an hour shorter time than it took a Boeing 787 Dreamliner to fly 2880 mi. Determine
the speed of each plane.

57. Two small planes, a Skyhawk and a Mooney Bravo, took off from the same place and at the same time. The
Skyhawk flew 500 km. The Mooney Bravo flew 1050 km in one hour longer time and at a 100 km/h faster
speed. If the planes fly faster than 200 km/h, find the average rate of each plane.

58. Gina drives 550 km to a conference. Due to heavier traffic, she returns at 10 km/h slower rate. If the round
trip took her 10.5 hours, what was Gina’s average rate of driving to the workshop?

59. A barge travels 25 km upriver and then returns in a total of 5 hours. If the current in
the river is 3 km/hr, approximately how fast would this barge move in still water?

60. A canoeist travels 3 kilometers down a river with a 3 km/h current. For the return trip upriver, the canoeist
chose to use a longer branch of the river with a 2 km/hr current. If the return trip is 4 km long and the time
needed for travelling both ways is 3 hours, approximate the speed of the canoe in still water.

61. Two planes take off from the same airport and at the same time. The first plane flies with an average speed 𝑟𝑟 
km/h and is heading North. The second plane flies faster by 40 km/h and is heading East. In thirty minutes
the planes are 580 kilometers apart from each other. Determine the average speed of each plane.

62. Jack flew 650 km to visit his relatives in Alaska. On the way to Alaska, his plane encounter a 40 km/h
headwind. On the returning trip, the plane flew with a 20 km/h tailwind. If the total flying time (both ways)
was 5 hours 45 minutes, what was the average speed of the plane in still air?

63. Two janitors, an experienced and a newly hired one, need 4 hours to clean a school building. The newly hired
worker would need 1.5 hour longer time than the experienced one to clean the school on its own. To the
nearest minute, how much time is required for the experienced janitor to clean the school working alone?

64. Two workers can weed out a vegetable garden in 2 hr. On its own, one worker can do the same job in half an
hour shorter time than the other. To the nearest minute, how long would it take the faster worker to weed out
the garden by himself?

65. Helen and Monica are planting flowers in their garden. On her own, Helen would need an hour
longer than Monica to plant all the flowers. Together, they can finish the job in 8 hr. To the
nearest minute, how long would it take each person to plant all the flowers if working alone?

https://unsplash.com/photos/VviNSpJuGj0
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66. To prepare the required number of pizza crusts for a day, the owner of Ricardo’s Pizza
needs 40 minutes shorter time than his worker Sergio. Together, they can make these pizza
crusts in 2 hours. To the nearest minute, how long would it take each of them to do this job
alone?

67. A fish tank can be filled with water with the use of one of two pipes of different diameters.
If only the larger-diameter pipe is used, the tank can be filled in an hour shorter time than if only the smaller-
diameter pipe is used. If both pipes are open, the tank can be filled in 1 hr 12 min. How much time is needed
for each pipe to fill the tank if working alone?

68. Two roofers, Garry and Larry, can install new asphalt roof shingles in 6 hours 40 min. On his own, Garry can
do this job in 3 hours shorter time than Larry can. How much time each or the roofers need to install these
shingles alone?

69. A ball is thrown down with the initial velocity of 6 m/sec from a balcony that is 100 m above the ground.
Suppose that function ℎ(𝑡𝑡) = −4.9𝑡𝑡2 − 6𝑡𝑡 + 100 can be used to determine the height ℎ(𝑡𝑡) of the ball 𝑡𝑡 
seconds after it was thrown down. Approximately in how many seconds the ball will be 5 meters above the
ground?

70. A bakery’s weekly profit, 𝑃𝑃 (in dollars), for selling 𝑛𝑛 poppyseed strudels can be modelled by the function
𝑃𝑃(𝑛𝑛) = −0.05𝑥𝑥2 + 7𝑥𝑥 − 200. What is the minimum number of poppyseed strudels that must be sold to
make a profit of $200?

71. If 𝑃𝑃 dollars is invested in an account that pays the annual interest rate 𝑟𝑟 (in decimal form), then the amount
𝐴𝐴 of money in the account after 2 years can be determined by the formula 𝐴𝐴 =  𝑃𝑃(1 + 𝑟𝑟)2. Suppose $3000
invested in this account for 2 years grew to $3257.29. What was the interest rate?

72. To determine the distance, 𝑑𝑑, of an object to the horizon we can use the equation 𝑑𝑑 = √12800ℎ + ℎ2, where
ℎ represents the distance of an object to the Earth’s surface, and both, 𝑑𝑑 and ℎ, are in kilometers. To the
nearest meter, how far above the Earth’s surface is a plane if its distance to the horizon is 400 kilometers?
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Q3 Properties and Graphs of Quadratic Functions 

In this section, we explore an alternative way of graphing quadratic functions. It turns out 
that if a quadratic function is given in vertex form, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, its graph can 
be obtained by transforming the shape of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, by applying a 
vertical dilation by the factor of 𝑎𝑎, as well as a horizontal translation by 𝑝𝑝 units and 
vertical translation by 𝑞𝑞 units. This approach makes the graphing process easier than when 
using a table of values.  

In addition, the vertex form allows us to identify the main characteristics of the 
corresponding graph such as shape, opening, vertex, and axis of symmetry. Then, the 
additional properties of a quadratic function, such as domain and range, or where the 
function increases or decreases can be determined by observing the obtained graph.  

Properties and Graph of the Basic Parabola 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 

Recall the shape of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, as discussed in Section P4. 

Observe the relations between the points listed in the table above. If we start with plotting 
the vertex (𝟎𝟎,𝟎𝟎), then the next pair of points, (𝟏𝟏,𝟏𝟏) and (−𝟏𝟏,𝟏𝟏), is plotted 1 unit across 
from the vertex (both ways) and 1 unit up. The following pair, (𝟐𝟐,𝟒𝟒) and (−𝟐𝟐,𝟒𝟒), is plotted 
2 units across from the vertex and 4 units up. The graph of the parabola is obtained by 
connecting these 5 main points by a curve, as illustrated in Figure 3.1. 

The graph of this parabola is symmetric in the 𝑦𝑦-axis, so the equation of the axis of 
symmetry is 𝒙𝒙 = 𝟎𝟎.  

The domain of the basic parabola is the set of all real numbers, ℝ, as 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 is a 
polynomial, and polynomials can be evaluated for any real 𝑥𝑥-value.  

The arms of the parabola are directed upwards, which means that the vertex 
is the lowest point of the graph. Hence, the range of the basic parabola 
function, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, is the interval [𝟎𝟎,∞), and the minimum value of the 
function is 0.   

Suppose a point ‘lives’ on the graph and travels from left to right. Observe 
that in the case of the basic parabola, if 𝑥𝑥-coordinates of the ‘travelling’ point 
are smaller than 0, the point slides down along the graph. Similarly, if 𝑥𝑥-
coordinates are larger than 0, the point climbs up the graph. (See Figure 3.2) 
To describe this property in mathematical language, we say that the 
function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 decreases in the interval (−∞, 0] and increases in the 
interval [0,∞).  

𝒙𝒙 𝒙𝒙𝟐𝟐 
−𝟐𝟐 𝟒𝟒 
−𝟏𝟏 𝟏𝟏 
𝟎𝟎 𝟎𝟎 
𝟏𝟏 𝟏𝟏 
𝟐𝟐 𝟒𝟒 

Figure 3.1 

𝑥𝑥 
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𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 

1 

minimum 

1 
point climbs up-
function increases 

 point slides down- 
 function decreases 

Figure 3.2 
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Properties and Graphs of a Dilated Parabola 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒂𝒂𝟐𝟐  

Figure 3.3 shows graphs of several functions of the form 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2. Observe 
how the shapes of these parabolas change for various values of 𝑎𝑎 in comparison 
to the shape of the basic parabola 𝑦𝑦 = 𝑥𝑥2. 

The common point for all of these parabolas is the vertex (0,0). Additional 
points, essential for graphing such parabolas, are shown in the table below. 

For example, to graph 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2, it is convenient to plot the vertex first, 
which is at the point (𝟎𝟎,𝟎𝟎). Then, we may move the pen 1 unit across from the 
vertex (either way) and 3 units up to plot the points (−1,3) and (1,3). If the 
grid allows, we might want to plot the next two points, (−2,12) and (2,12), by 
moving the pen 2 units across from the vertex and 4 ∙ 3 = 𝟏𝟏𝟏𝟏 units up, as in 
Figure 3.4. 

Notice that the obtained shape (in solid green) is narrower than the shape of 
the basic parabola (in dashed orange). However, similarly as in the case of the 
basic parabola, the shape of the dilated function is still symmetrical about the 
𝒚𝒚-axis, 𝒙𝒙 = 𝟎𝟎. 

Now, suppose we want to graph the function 𝑓𝑓(𝑥𝑥) = − 1
2
𝑥𝑥2. As before, we may 

start by plotting the vertex at (0,0). Then, we move the pen 1 unit across from 
the vertex (either way) and half a unit down to plot the points �−1,−1

2
� and 

�1,−1
2
�, as in Figure 3.5. The next pair of points can be plotted by moving the 

pen 2 units across from the vertex and 𝟐𝟐 units down, as the ordered pairs 
(−2,−2) and (2,−2) satisfy the equation  𝑓𝑓(𝑥𝑥) = −1

2
𝑥𝑥2.  

Notice that this time the obtained shape (in solid brown) is wider than the shape 
of the basic parabola (in dashed orange). Also, as a result of the negative 𝒂𝒂-
value, the parabola opens down, and the range of this function is (−∞,𝟎𝟎]. 

Generally, the shape of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 is 
- narrower than the shape of the basic parabola, if |𝒂𝒂| > 𝟏𝟏;
- wider than the shape of the basic parabola, if 𝟎𝟎 < |𝒂𝒂| < 𝟏𝟏; and
- the same as the shape of the basic parabola, 𝑦𝑦 = 𝑥𝑥2, if |𝒂𝒂| = 𝟏𝟏.

The parabola opens up, for 𝒂𝒂 > 𝟎𝟎, and down, for 𝒂𝒂 < 𝟎𝟎.  
Thus the vertex becomes the lowest point of the graph, if 𝒂𝒂 > 𝟎𝟎, and the 
highest point of the graph, if 𝒂𝒂 < 𝟎𝟎. 

The range of 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 is [𝟎𝟎,∞), if  𝒂𝒂 > 𝟎𝟎, and (−∞,𝟎𝟎], if  𝒂𝒂 < 𝟎𝟎. 

𝒙𝒙 𝒂𝒂𝒂𝒂𝟐𝟐 
−𝟐𝟐 𝟒𝟒𝟒𝟒 
−𝟏𝟏 𝒂𝒂 
𝟎𝟎 𝟎𝟎 
𝟏𝟏 𝒂𝒂 
𝟐𝟐 𝟒𝟒𝟒𝟒 

Figure 3.3 
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Figure 3.5 
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The axis of symmetry of the dilated parabola 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 remains the same as 
that of the basic parabola, which is 𝒙𝒙 = 𝟎𝟎. 

Graphing a Dilated Parabola and Describing Its Shape, Opening, and Range 

For each quadratic function, describe its shape and opening. Then graph it and determine 
its range. 

a. 𝑓𝑓(𝑥𝑥) = 1
4
𝑥𝑥2 b. 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2

a. Since the leading coefficient of the function 𝑓𝑓(𝑥𝑥) = 1
4
𝑥𝑥2 is positive, the parabola 

opens up. Also, since 0 < 1
4

< 1, we expect the shape of the parabola to be 
wider than that of the basic parabola. 

To graph 𝑓𝑓(𝑥𝑥) = 1
4
𝑥𝑥2, first we plot the vertex at (0,0) and then points �±1, 1

4
� 

and �±2, 1
4
∙ 4� = (±2,1). After connecting these points with a curve, we

obtain the graph of the parabola. 

By projecting the graph onto the 𝑦𝑦-axis, we observe that the range of the 
function is [0,∞). 

b. Since the leading coefficient of the function 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2 is negative, the parabola
opens down. Also, since |−2| > 1, we expect the
shape of the parabola to be narrower than that of
the basic parabola.

To graph  𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2, first we plot the vertex at
(0,0) and then points (±1,−2) and (±2,−2 ∙ 4) =
(±2,−8). After connecting these points with a 
curve, we obtain the graph of the parabola.

By projecting the graph onto the 𝑦𝑦-axis, we observe 
that the range of the function is (−∞, 0]. 

Properties and Graphs of the Basic Parabola with Shifts 

Suppose we would like to graph the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2. We could do this via a 
table of values, but there is an easier way if we already know the shape of the basic 
parabola 𝑦𝑦 = 𝑥𝑥2. 

Observe that for every 𝑥𝑥-value, the value of 𝑥𝑥2 − 2 is obtained by subtracting 2 from 
the value of 𝑥𝑥2. So, to graph 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2, it is enough to move each point (𝑥𝑥, 𝑥𝑥2) 
of the basic parabola by two units down, as indicated in Figure 3.6. 

The shift of 𝑦𝑦-values by 2 units down causes the range of the new function, 𝑓𝑓(𝑥𝑥) =
𝑥𝑥2 − 2, to become [−𝟐𝟐,∞). Observe that this vertical shift also changes the 
minimum value of this function, from 0 to −2. 

Figure 3.6 
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The axis of symmetry remains unchanged, and it is 𝒙𝒙 = 𝟎𝟎. 

Generally, the graph of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝒒𝒒 can be 
obtained by 

- shifting the graph of the basic parabola 𝒒𝒒 steps up, if 𝒒𝒒 > 𝟎𝟎;
- shifting the graph of the basic parabola |𝒒𝒒| steps down, if 𝒒𝒒 < 𝟎𝟎.

The vertex of such parabola is at (𝟎𝟎,𝒒𝒒). The range of it is [𝒒𝒒,∞). 
The minimum (lowest) value of the function is 𝒒𝒒. 
The axis of symmetry is 𝒙𝒙 = 𝟎𝟎. 

Now, suppose we wish to graph the function 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2. We can graph it by 
joining the points calculated in the table below. 

Observe that the parabola 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 assumes its 
lowest value at the vertex. The lowest value of the perfect 
square (𝑥𝑥 − 2)2 is zero, and it is attained at the 𝑥𝑥-value of 2. 
Thus, the vertex of this parabola is (2,0). 

Notice that the vertex (𝟐𝟐,𝟎𝟎) of 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 is 
positioned 2 units to the right from the vertex (0,0) of the 
basic parabola. 

This suggests that the graph of the function 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 can be obtained without the 
aid of a table of values. It is enough to shift the graph of the basic parabola 2 units to the 
right, as shown in Figure 3.7. 

Observe that the horizontal shift does not influence the range of the new parabola 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 − 2)2. It is still [𝟎𝟎,∞), the same as for the basic parabola. However, the axis of 
symmetry has changed to 𝒙𝒙 = 𝟐𝟐. 

Generally, the graph of a quadratic function of the form 𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝒑𝒑)𝟐𝟐 can be obtained 
by 

- shifting the graph of the basic parabola 𝒑𝒑 steps to the right, if 𝒑𝒑 > 𝟎𝟎;
- shifting the graph of the basic parabola |𝒑𝒑| steps to the left, if 𝒑𝒑 < 𝟎𝟎.

The vertex of such a parabola is at (𝒑𝒑,𝟎𝟎). The range of it is [𝟎𝟎,∞).

The minimum value of the function is 𝟎𝟎.

The axis of symmetry is 𝒙𝒙 = 𝒑𝒑.

Graphing Parabolas and Observing Transformations of the Basic Parabola 

Graph each parabola by plotting its vertex and following the appropriate opening and shape. 
Then describe transformations of the basic parabola that would lead to the obtained graph. 
Finally, state the range and the equation of the axis of symmetry. 

a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 3)2 b. 𝑔𝑔(𝑥𝑥) = −𝑥𝑥2 + 1

𝒙𝒙 (𝒙𝒙 − 𝟐𝟐)𝟐𝟐 
𝟎𝟎 𝟒𝟒 
𝟏𝟏 𝟏𝟏 
𝟐𝟐 𝟎𝟎 
𝟑𝟑 𝟏𝟏 
𝟒𝟒 𝟒𝟒 

Figure 3.7 

𝑥𝑥 

𝑦𝑦 = 𝑥𝑥2 4 

2 
  2 units 
 to the right 
 

𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝟐𝟐)𝟐𝟐 

vertex 
(𝟐𝟐,𝟎𝟎) 
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a. The perfect square (𝑥𝑥 + 3)2 attains its lowest value at
𝑥𝑥 = −3. So, the vertex of the parabola 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 + 3)2 is (−𝟑𝟑,𝟎𝟎). Since the leading coefficient is 1,
the parabola takes the shape of 𝑦𝑦 = 𝑥𝑥2, and its arms
open up.

The graph of the function 𝑓𝑓 can be obtained by shifting
the graph of the basic parabola 3 units to the left, as
shown in Figure 3.8.

The range of function 𝑓𝑓 is [𝟎𝟎,∞), and the equation of
the axis of symmetry is 𝒙𝒙 = −𝟑𝟑.

b. The expression  −𝑥𝑥2 + 1  attains its highest value at
𝑥𝑥 = 0. So, the vertex of the parabola 𝑔𝑔(𝑥𝑥) = −𝑥𝑥2 + 1
is (𝟎𝟎,𝟏𝟏). Since the leading coefficient is −1, the
parabola takes the shape of 𝑦𝑦 = 𝑥𝑥2, but its arms open
down.

The graph of the function 𝑔𝑔 can be obtained by:

- first, flipping the graph of the basic parabola over
the 𝒙𝒙-axis, and then

- shifting the graph of 𝑦𝑦 = −𝑥𝑥2 1 unit up, as shown
in Figure 3.9.

The range of the function 𝑔𝑔 is (−∞,𝟏𝟏], and the equation of the axis of symmetry is 
𝒙𝒙 = 𝟎𝟎. 

Note: The order of transformations in the above example is essential. The reader is 
encouraged to check that shifting the graph of 𝑦𝑦 = 𝑥𝑥2 by 1 unit up first and 
then flipping it over the 𝑥𝑥-axis results in a different graph than the one in 
Figure 3.9. 

Properties and Graphs of Quadratic Functions Given in the Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 

So far, we have discussed properties and graphs of quadratic functions that can be obtained 
from the graph of the basic parabola by applying mainly a single transformation. These 
transformations were: dilations (including flips over the 𝑥𝑥-axis), and horizontal and vertical 
shifts. Sometimes, however, we need to apply more than one transformation. We have 
already encountered such a situation in Example 2b, where a flip and a vertical shift were 
applied. Now, we will look at properties and graphs of any function of the form 𝒇𝒇(𝒙𝒙) =
𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, referred to as the vertex form of a quadratic function. 

Solution 

Figure 3.8 

𝑥𝑥 

𝑦𝑦 = 𝑥𝑥2 

2 

−3
  3 units 
 to the left 
 

𝒇𝒇(𝒙𝒙) = (𝒙𝒙+ 𝟑𝟑)𝟐𝟐 

vertex 
(−𝟑𝟑,𝟎𝟎) 

Figure 3.9 

𝑥𝑥 

𝒚𝒚 = 𝒙𝒙𝟐𝟐 

−4

1 

  1 unit 
 up 

𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐 + 𝟏𝟏 

vertex 
(𝟏𝟏,𝟎𝟎) 

𝒚𝒚 = −𝒙𝒙𝟐𝟐 
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Suppose we wish to graph 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 + 1)2 − 3. This can be accomplished by connecting 
the points calculated in a table of values, such as the one below, or by observing the 

coordinates of the vertex and following the shape of the graph 
of 𝑦𝑦 = 2𝑥𝑥2. Notice that the vertex of our parabola is at
(−1,−3).  This information can be taken directly from the 

equation 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 + 1)2 − 3 = 2�𝑥𝑥 − (−𝟏𝟏)�
2
− 𝟑𝟑,

without the aid of a table of values. 

The rest of the points follow the pattern of the shape for 
the 𝑦𝑦 = 2𝑥𝑥2 parabola: 1 across, 2 up; 2 across, 4 ∙ 2 =
8 up. So, we connect the points as in Figure 3.10.  

Notice that the graph of function 𝑓𝑓 could also be 
obtained as a result of translating the graph of 𝑦𝑦 = 2𝑥𝑥2 
by 1 unit left and 3 units down, as indicated in Figure 
3.10 by the blue vectors. 

Here are the main properties of the graph of function 𝑓𝑓: 
- It has a shape of 𝑦𝑦 = 𝟐𝟐𝒙𝒙𝟐𝟐;
- It is a parabola that opens up;
- It has a vertex at (−𝟏𝟏,−𝟑𝟑);
- It is symmetrical about the line 𝒙𝒙 = −𝟏𝟏;
- Its minimum value is –𝟑𝟑, and this minimum is attained at 𝑥𝑥 = −1;
- Its domain is the set of all real numbers, and its range is the interval [−𝟑𝟑,∞);
- It decreases for 𝑥𝑥 ∈ (−∞,−𝟏𝟏] and increases for 𝑥𝑥 ∈ [−𝟏𝟏,  ∞).

The above discussion of properties and graphs of a quadratic function given in vertex form 
leads us to the following general observations: 

Characteristics of Quadratic Functions Given in Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 

1. The graph of a quadratic function given in vertex form

𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒, where 𝒂𝒂 ≠ 𝟎𝟎, 

is a parabola with vertex (𝒑𝒑,𝒒𝒒) and axis of symmetry 𝒙𝒙 = 𝒑𝒑. 

2. The graph opens up if 𝒂𝒂 is positive and down if 𝒂𝒂 is negative.

3. If 𝒂𝒂 > 𝟎𝟎, 𝒒𝒒 is the minimum value. If 𝒂𝒂 < 𝟎𝟎, 𝒒𝒒 is the maximum value.

3. The graph is narrower than that of 𝑦𝑦 = 𝑥𝑥2 if  |𝒂𝒂| > 𝟏𝟏.
The graph is wider than that of 𝑦𝑦 = 𝑥𝑥2 if  𝟎𝟎 < |𝒂𝒂| < 𝟏𝟏.

4. The domain of function 𝑓𝑓 is the set of real numbers, ℝ.
The range of function 𝑓𝑓 is [𝒒𝒒,∞) if 𝒂𝒂 is positive and (−∞,𝒒𝒒] if 𝒂𝒂 is negative.

𝒙𝒙 𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 
−𝟑𝟑 𝟓𝟓 
−𝟐𝟐 −𝟏𝟏
−𝟏𝟏 −𝟑𝟑
𝟎𝟎 −𝟏𝟏
𝟏𝟏 𝟓𝟓 

vertex 
1 unit apart 
from zero, 
2 units up opposite to the 

number in the bracket 
the same last 

number 

Figure 3.10 

𝑥𝑥 

𝟐𝟐𝟐𝟐𝟐𝟐 
5 

−1

translation 
1 left,  
3 down 

  1 across, 
 2 up 

  𝒇𝒇(𝒙𝒙) = 𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 

2 across, 
8 up 

−3
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Identifying Properties and Graphing Quadratic Functions Given in Vertex Form 
𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 

For each function, identify its vertex, opening, axis of symmetry, and shape. Then graph 
the function and state its domain and range. Finally, describe transformations of the basic 
parabola that would lead to the obtained graph.  

a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2 + 2 b. 𝑔𝑔(𝑥𝑥) = −1
2

(𝑥𝑥 + 1)2 + 3 

a. The vertex of the parabola 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2 + 2 is
(𝟑𝟑,𝟐𝟐); the graph opens up, and the equation of the axis
of symmetry is 𝒙𝒙 = 𝟑𝟑. To graph this function, we can
plot the vertex first and then follow the shape of the
basic parabola 𝑦𝑦 = 𝒙𝒙𝟐𝟐.

The domain of function 𝑓𝑓 is ℝ, and the range is [𝟐𝟐,∞).

The graph of 𝑓𝑓 can be obtained by shifting the graph of
the basic parabola 3 units to the right and 2 units up.

b. The vertex of the parabola 𝑔𝑔(𝑥𝑥) = −1
2

(𝑥𝑥 + 1)2 + 3 is 
(−𝟏𝟏,𝟑𝟑); the graph opens down, and the equation of the axis of symmetry is 𝒙𝒙 =
−𝟏𝟏. To graph this function, we can plot the vertex first and then follow the shape
of the parabola 𝑦𝑦 = −1

2
𝒙𝒙𝟐𝟐. This means that starting from the vertex, we move the 

pen one unit across (both ways) and drop half a unit to plot the next two points, 
�0, 5

2
� and symmetrically �−2, 5

2
�. To plot the following two points, again, we 

start from the vertex and move our pen two units across and 2 units down (as −1
2
∙

4 = −2). So, the next two points are (1,1) and symmetrically (−4,1), as indicated 
in Figure 3.11. 

The domain of function 𝑔𝑔 is ℝ, and the range is (−∞,𝟑𝟑]. 

The graph of 𝑔𝑔 can be obtained  from the graph of the basic parabola in two steps: 
1. Dilate the basic parabola by multiplying its 𝑦𝑦-values by the factor of −1

2
.  

2. Shift the graph of the dilated parabola 𝑦𝑦 = − 1
2
𝒙𝒙𝟐𝟐, 1 unit to the left and 3 units 

up, as indicated in Figure 3.11.

Aside from the main properties such as vertex, opening and shape, we are often interested 
in 𝑥𝑥- and 𝑦𝑦-intercepts of the given parabola. The next example illustrates how to find these 
intercepts from the vertex form of a parabola. 

Finding the Intercepts from the Vertex Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒑𝒑)𝟐𝟐 + 𝒒𝒒 

Find the 𝑥𝑥- and 𝑦𝑦-intercepts of each parabola. 

Solution 

Figure 3.11 

𝑥𝑥 

𝑦𝑦 = 𝑥𝑥2 

2 

3 

 𝒇𝒇(𝒙𝒙) = (𝒙𝒙+ 𝟑𝟑)𝟐𝟐 

translation 
3 right, 2 up 

 

𝑥𝑥 

𝒚𝒚 = 𝒙𝒙𝟐𝟐 

−1

𝒈𝒈(𝒙𝒙) = −𝟏𝟏
𝟐𝟐
(𝒙𝒙+ 𝟏𝟏)𝟐𝟐 + 𝟑𝟑 

 

𝒚𝒚 = −𝟏𝟏
𝟐𝟐
𝒙𝒙𝟐𝟐 

translation 
1 left, 3 up 

3 
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a. 𝑓𝑓(𝑥𝑥) = 1
4

(𝑥𝑥 − 2)2 − 2 b. 𝑔𝑔(𝑥𝑥) = −2(𝑥𝑥 + 1)2 − 3

a. To find the 𝑦𝑦-intercept, we evaluate the function at zero. Since

𝑓𝑓(0) =
1
4

(−2)2 − 2 = 1 − 2 = −1, 

then the 𝑦𝑦-intercept is (𝟎𝟎,−𝟏𝟏). 

To find 𝑥𝑥-intercepts, we set 𝑓𝑓(𝑥𝑥) = 0. So, we need to solve the equation 

1
4

(𝑥𝑥 − 2)2 − 2 = 0 

1
4

(𝑥𝑥 − 2)2 = 2 

(𝑥𝑥 − 2)2 = 8 

�(𝑥𝑥 − 2)2 = √8 

|𝑥𝑥 − 2| = 2√2 

𝑥𝑥 − 2 = ±2√2 

𝑥𝑥 = 2 ± 2 = �2 + 2√2
2− 2√2

Hence, the two 𝑥𝑥-intercepts are: �𝟐𝟐 − 𝟐𝟐√𝟐𝟐,𝟎𝟎� and �𝟐𝟐 + 𝟐𝟐√𝟐𝟐,𝟎𝟎�. 

b. Since 𝑔𝑔(0) = −2(1)2 − 3 = −5, then the 𝑦𝑦-intercept is (𝟎𝟎,−𝟓𝟓).

To find 𝑥𝑥-intercepts, we attempt to solve the equation

−2(𝑥𝑥 + 1)2 − 3 = 0

−2(𝑥𝑥 + 1)2 = 3

(𝑥𝑥 + 1)2 = − 3
2

However, since the last equation doesn’t have any solution, we conclude that function 
𝑔𝑔(𝑥𝑥) has no 𝑥𝑥-intercepts. 

Solution 

𝑥𝑥 

−5

−1

𝑦𝑦- intercept 

𝒈𝒈(𝒙𝒙) = −𝟐𝟐(𝒙𝒙 + 𝟏𝟏)𝟐𝟐 − 𝟑𝟑 

𝑥𝑥 −1 2 

𝑦𝑦-intercept 

 𝑥𝑥-intercepts 

𝒇𝒇(𝒙𝒙) = 𝟏𝟏
𝟒𝟒
(𝒙𝒙 − 𝟐𝟐)2

 nonnegative  negative 
cannot be equal 
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Q.3  Exercises

1. Match each quadratic function a.-d. with its graph I-IV.

a. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 − 1 I II 

b. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)2 + 1

c. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 + 1 III IV 

d. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 − 1

2. Match each quadratic function a.-d. with its graph I-IV.

a. 𝑔𝑔(𝑥𝑥) = −(𝑥𝑥 − 2)2 + 1 I II 

b. 𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 − 1

c. 𝑔𝑔(𝑥𝑥) = −2𝑥𝑥2 + 1 III IV 

d. 𝑔𝑔(𝑥𝑥) = 2(𝑥𝑥 + 2)2 − 1

3. Match each quadratic function with the characteristics of its parabolic graph.

a. 𝑓𝑓(𝑥𝑥) = 5(𝑥𝑥 − 3)2 + 2 I vertex (3,2), opens down 

b. 𝑓𝑓(𝑥𝑥) = −4(𝑥𝑥 + 2)2 − 3 II vertex (3,2), opens up 

c. 𝑓𝑓(𝑥𝑥) = − 1
2

(𝑥𝑥 − 3)2 + 2 III vertex (−2,−3), opens down 

d. 𝑓𝑓(𝑥𝑥) = 1
4

(𝑥𝑥 + 2)2 − 3 IV vertex (−2,−3), opens up 

𝑥𝑥 
1 

2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 −1 

−2

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 −1
2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 
1 

−2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 −1
−2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 
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For each quadratic function, describe the shape (as wider, narrower, or the same as the shape of 𝑦𝑦 = 𝑥𝑥2) and 
opening (up or down) of its graph. Then graph it and determine its range. 

4. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 5. 𝑓𝑓(𝑥𝑥) = − 1
2
𝑥𝑥2 6. 𝑓𝑓(𝑥𝑥) = −3

2
𝑥𝑥2 

7. 𝑓𝑓(𝑥𝑥) = 5
2
𝑥𝑥2 8. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 9. 𝑓𝑓(𝑥𝑥) = 1

3
𝑥𝑥2 

Graph each parabola by plotting its vertex, and following its shape and opening. Then, describe transformations 
of the basic parabola that would lead to the obtained graph. Finally, state the domain and range, and the equation 
of the axis of symmetry. 

10. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 3)2 11. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 2 12. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 5

13. 𝑓𝑓(𝑥𝑥) = −(𝑥𝑥 + 2)2 14. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 − 1 15. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 2)2 

For each parabola, state its vertex, shape, opening, and x- and y-intercepts. Then, graph the function and 
describe transformations of the basic parabola that would lead to the obtained graph.  

16. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 1 17. 𝑓𝑓(𝑥𝑥) = −3
4
𝑥𝑥2 + 3 

18. 𝑓𝑓(𝑥𝑥) = −1
2

(𝑥𝑥 + 4)2 + 2 19. 𝑓𝑓(𝑥𝑥) = 5
2

(𝑥𝑥 − 2)2 − 4 

20. 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 3)2 + 3
2

21. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 + 1)2 + 5

22. 𝑓𝑓(𝑥𝑥) = −2
3

(𝑥𝑥 + 2)2 + 4 23. 𝑓𝑓(𝑥𝑥) = 4
3

(𝑥𝑥 − 3)2 − 2 

24. Four students, A, B, C, and D, tried to graph the function 𝑓𝑓(𝑥𝑥) = −2(𝑥𝑥 + 1)2 − 3 by transforming the graph
of the basic parabola, 𝑦𝑦 = 𝑥𝑥2. Here are the transformations that each student applied

Student A: Student B: 
- shift 1 unit left and 3 units down - dilation of 𝑦𝑦-values by the factor of −2
- dilation of 𝑦𝑦-values by the factor of −2 - shift 1 unit left

- shift 3 units down

Student C: Student D: 
- flip over the 𝑥𝑥-axis - shift 1 unit left
- shift 1 unit left and 3 units down - dilation of 𝑦𝑦-values by the factor of 2
- dilation of 𝑦𝑦-values by the factor of 2 - shift 3 units down

- flip over the 𝑥𝑥-axis

With the assumption that all transformations were properly applied, discuss whose graph was correct and what 
went wrong with the rest of the graphs. Is there any other sequence of transformations that would result in a 
correct graph?  

For each parabola, state the coordinates of its vertex and then graph it. Finally, state the extreme value 
(maximum or minimum, whichever applies) and the range of the function.  

25. 𝑓𝑓(𝑥𝑥) = 3(𝑥𝑥 − 1)2 26. 𝑓𝑓(𝑥𝑥) = −5
2

(𝑥𝑥 + 3)2 
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27. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)2 − 3 28. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 + 4)2 + 5

29. 𝑓𝑓(𝑥𝑥) = −2(𝑥𝑥 − 5)2 − 2 30. 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 4)2 + 1

31. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 1)2 + 3
2
 32. 𝑓𝑓(𝑥𝑥) = −1

2
(𝑥𝑥 − 1)2 − 3 

33. 𝑓𝑓(𝑥𝑥) = −1
4

(𝑥𝑥 − 3)2 + 4 34. 𝑓𝑓(𝑥𝑥) = 3
4
�𝑥𝑥 + 5

2
�
2
− 3

2

Given the graph of a parabola, state the most probable equation of the corresponding function. Hint: Use the 
vertex form of a quadratic function. 

35. 36. 37. 

38. 39. 40. 

𝑥𝑥 

−4

−3

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

5 

3 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

−5

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

2 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

1 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

1 

−2

𝑓𝑓(𝑥𝑥) 
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Q4 Properties of Quadratic Functions and Optimization Problems 

In the previous section, we examined how to graph and read the characteristics of the graph 
of a quadratic function given in vertex form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − 𝑝𝑝)2 + 𝑞𝑞.  In this section, we 
discuss the ways of graphing and reading the characteristics of the graph of a quadratic 
function given in standard form, 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄. One of these ways is to convert 
standard form of the function to vertex form by completing the square so that the 
information from the vertex form may be used for graphing. The other handy way of 
graphing and reading properties of a quadratic function is to factor the defining trinomial 
and use the symmetry of a parabolic function.  

At the end of this section, we apply properties of quadratic functions to solve certain 
optimization problems. To solve these problems, we look for the maximum or minimum 
of a particular quadratic function satisfying specified conditions called constraints. 
Optimization problems often appear in geometry, calculus, business, computer science, etc. 

Graphing Quadratic Functions Given in the Standard Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 

To graph a quadratic function given in standard form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, we can use 
one of the following methods: 

1. constructing a table of values (this would always work, but it could be cumbersome);
2. converting to vertex form by using the technique of completing the square (see

Examples 1-3);
3. factoring and employing the properties of a parabolic function. (this is a handy method

if the function can be easily factored – see Examples 4 and 5)

The table of values approach can be used for any function, and it was already discussed on 
various occasions throughout this textbook.  

Converting to vertex form involves completing the square. For example, to convert the 
function 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 𝑥𝑥 − 5 to its vertex form, we might want to start by dividing both 
sides of the equation by the leading coefficient 2, and then complete the square for the 
polynomial on the right side of the equation, as below. 

𝑓𝑓(𝑥𝑥)
2

= 𝑥𝑥2 +
1
2
𝑥𝑥 −

5
2

𝑓𝑓(𝑥𝑥)
2

= �𝑥𝑥 +
1
4
�
2

−
1

16
−

5 ∙ 8
2 ∙ 8

𝑓𝑓(𝑥𝑥)
2

= �𝑥𝑥 +
1
4
�
2

−
41
16

Finally, the vertex form is obtained by multiplying both sides of the equation back 
by 2. So, we have  

𝑓𝑓(𝑥𝑥) = 2 �𝑥𝑥 +
1
4
�
2

−
41
8

This form lets us identify the vertex, �− 1
4

,−41
8
�, and the shape, 𝑦𝑦 = 2𝑥𝑥2, of the 

parabola, which is essential for graphing it. To create an approximate graph of Figure 4.1 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒙𝒙 − 𝟓𝟓 

1 

−5

2 

https://commons.wikimedia.org/wiki/Early_iron_and_steel_bridges#/media/File:Garabit.jpg


Section Q4 |   209  

Properties of Quadratic Functions and Optimization Problems 

function 𝑓𝑓, we may want to round the vertex to approximately (−0.25,−5.1) and evaluate 
𝑓𝑓(0) = 2 ∙ 02 + 0 − 5 = −5. So, the graph is as in Figure 4.1.  

Converting the Standard Form of a Quadratic Function to the Vertex Form 

Rewrite each function in its vertex form. Then, identify the vertex. 

a. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 2𝑥𝑥   b. 𝑔𝑔(𝑥𝑥) = 1
2
𝑥𝑥2 + 𝑥𝑥 + 3 

a. To convert 𝑓𝑓 to its vertex form, we follow the completing the square procedure. After
dividing the equation by the leading coefficient,

𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 2𝑥𝑥, 
we have 

𝑓𝑓(𝑥𝑥)
−3

= 𝑥𝑥2 −
2
3
𝑥𝑥 

Then, we complete the square for the right side of the equation, 

𝑓𝑓(𝑥𝑥)
−3

= �𝑥𝑥 −
1
3
�
2

−
1
9

, 

and finally, multiply back by the leading coefficient, 

𝑓𝑓(𝑥𝑥) = −3 �𝑥𝑥 −
1
3
�
2

+
1
3

. 

Therefore, the vertex of this parabola is at the point �𝟏𝟏
𝟑𝟑

, 𝟏𝟏
𝟑𝟑
�. 

b. As in the previous example, to convert 𝑔𝑔 to its vertex form, we first wish to get rid of
the leading coefficient. This can be achieved by multiplying both sides of the equation
𝑔𝑔(𝑥𝑥) = 1

2
𝑥𝑥2 + 𝑥𝑥 + 3 by 2. So, we obtain 

2𝑔𝑔(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 + 6 

2𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 1)2 − 1 + 6 

2𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 1)2 + 5, 

which can be solved back for 𝑔𝑔, 

𝑔𝑔(𝑥𝑥) =
1
2

(𝑥𝑥 + 1)2 +
5
2

. 

Therefore, the vertex of this parabola is at the point �−𝟏𝟏, 𝟓𝟓
𝟐𝟐
�. 

Completing the square allows us to derive a formula for the vertex of the graph of any quadratic function given in its 
standard form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, where 𝑎𝑎 ≠ 0. Applying the same procedure as in Example 1, we calculate 

Solution 
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𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= 𝑥𝑥2 +
𝑏𝑏
𝑎𝑎
𝑥𝑥 +

𝑐𝑐
𝑎𝑎

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= �𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

−
𝑏𝑏2

4𝑎𝑎2
+
𝑐𝑐
𝑎𝑎

𝑓𝑓(𝑥𝑥)
𝑎𝑎

= �𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
�
2

−
𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

4𝑎𝑎2

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 �𝑥𝑥 − �−
𝑏𝑏

2𝑎𝑎
��

2

+
−(𝑏𝑏2 − 4𝑎𝑎𝑎𝑎)

4𝑎𝑎

Thus, the coordinates of the vertex (𝒑𝒑,𝒒𝒒) are 𝒑𝒑 = − 𝒃𝒃
𝟐𝟐𝟐𝟐

and  𝒒𝒒 = −�𝒃𝒃𝟐𝟐−𝟒𝟒𝟒𝟒𝟒𝟒�
𝟒𝟒𝟒𝟒

= −∆
𝟒𝟒𝟒𝟒

 . 

Observation: Notice that the expression for 𝑞𝑞 can also be found by evaluating 𝑓𝑓 at 
𝑥𝑥 = − 𝒃𝒃

𝟐𝟐𝟐𝟐
. 

So, the vertex of the parabola can also be expressed as �− 𝒃𝒃
𝟐𝟐𝟐𝟐

,𝒇𝒇 �− 𝒃𝒃
𝟐𝟐𝟐𝟐
��. 

Summarizing, the vertex of a parabola defined by 𝑓𝑓(𝑥𝑥) = 𝒂𝒂𝑥𝑥2 + 𝒃𝒃𝑥𝑥 + 𝒄𝒄, where 𝒂𝒂 ≠ 0, 
can be calculated by following one of the formulas: 

�− 𝒃𝒃
𝟐𝟐𝟐𝟐

, −�𝒃𝒃
𝟐𝟐−𝟒𝟒𝟒𝟒𝟒𝟒�
𝟒𝟒𝟒𝟒

� = �− 𝒃𝒃
𝟐𝟐𝟐𝟐

, −∆
𝟒𝟒𝟒𝟒
� = �− 𝒃𝒃

𝟐𝟐𝟐𝟐
,𝒇𝒇 �− 𝒃𝒃

𝟐𝟐𝟐𝟐
�� 

Using the Vertex Formula to Find the Vertex of a Parabola 

Use the vertex formula to find the vertex of the graph of  𝑓𝑓(𝑥𝑥)  = −𝑥𝑥2 − 𝑥𝑥 + 1. 

The first coordinate of the vertex is equal to  − 𝑏𝑏
2𝑎𝑎

= − −1
2∙(−1)

= −𝟏𝟏
𝟐𝟐
. 

The second coordinate can be calculated by following the formula 

−∆
4𝑎𝑎

=
−((−1)2 − 4 ∙ (−1) ∙ 1)

4 ∙ (−1) =
𝟓𝟓
𝟒𝟒

, 

or by evaluating 𝑓𝑓 �− 1
2
�  = −�− 1

2
�
2
− �− 1

2
�+ 1 = −1

4
+ 1

2
+ 1 = 𝟓𝟓

𝟒𝟒
. 

So, the vertex is �−𝟏𝟏
𝟐𝟐 , 𝟓𝟓𝟒𝟒�. 

Recall: This is 
the discriminant  

∆! 

Solution 
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Graphing a Quadratic Function Given in Standard Form 

Graph each function. 

a. 𝑔𝑔(𝑥𝑥) = 1
2
𝑥𝑥2 + 𝑥𝑥 + 3 b. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 𝑥𝑥 + 1

a. The shape of the graph of function 𝑔𝑔 is the same as that
of 𝑦𝑦 = 1

2
𝑥𝑥2. Since the leading coefficient is positive, the

arms of the parabola open up.
The vertex, �−𝟏𝟏, 𝟓𝟓

𝟐𝟐
�, was found in Example 1b as a result

of completing the square. Since the vertex is in quadrant
II and the graph opens up, we do not expect any 𝑥𝑥-
intercepts. However, without much effort, we can find the
𝑦𝑦-intercept by evaluating 𝑔𝑔(0) = 𝟑𝟑. Furthermore, since
(0, 3) belongs to the graph, then by symmetry, (−2, 3)
must also belong to the graph. So, we graph function 𝑔𝑔 is
as in Figure 4.2.

b. The graph of function 𝑓𝑓 has the shape of the basic
parabola. Since the leading coefficient is negative, the 
arms of the parabola open down.  
The vertex, �− 𝟏𝟏

𝟐𝟐 , 𝟓𝟓𝟒𝟒�, was found in Example 2 by using
the vertex formula. Since the vertex is in quadrant II and 
the graph opens down, we expect two 𝑥𝑥-intercepts. Their 
values can be found via the quadratic formula applied to 
the equation −𝑥𝑥2 − 𝑥𝑥 + 1 = 0. So, the 𝑥𝑥-intercepts are 

𝑥𝑥1,2 = 1±√5
−2

≈ −𝟏𝟏.𝟔𝟔 𝑜𝑜𝑜𝑜 𝟎𝟎.𝟔𝟔. In addition, the 𝑦𝑦-intercept of 
the graph is 𝑓𝑓(0) = 𝟏𝟏. 
Using all this information, we graph function 𝑓𝑓, as in Figure 4.3. 

Graphing Quadratic Functions Given in the Factored Form 𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐) 

What if a quadratic function is given in factored form? Do we have to change it to 
vertex or standard form in order to find the vertex and graph it? 

The factored form, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − 𝑟𝑟1)(𝑥𝑥 − 𝑟𝑟2), allows us to find the roots (or 𝑥𝑥-
intercepts) of such a function. These are 𝑟𝑟1 and 𝑟𝑟2. A parabola is symmetrical about the 
axis of symmetry, which is the vertical line passing through its vertex. So, the first 
coordinate of the vertex is the same as the first coordinate of the midpoint of the line 
segment connecting the roots, 𝑟𝑟1 with 𝑟𝑟2, as indicated in Figure 4.4. Thus, the first 
coordinate of the vertex is the average of the two roots, 𝑟𝑟1+ 𝑟𝑟2

2
. Then, the second 

coordinate of the vertex can be found by evaluating 𝑓𝑓 �𝑟𝑟1+ 𝑟𝑟2
2

�. 

 Figure 4.2 

Solution 

𝑥𝑥 

𝒈𝒈(𝒙𝒙) = 𝟏𝟏
𝟐𝟐𝒙𝒙

𝟐𝟐 + 𝒙𝒙 + 𝟑𝟑 

3 

1 

Figure 4.3 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐 − 𝒙𝒙 + 𝟏𝟏 

2 

2 

 

When plotting points 
with fractional 

coordinates, round the 
values to one place 

value. 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐) 

𝑟𝑟2 𝑟𝑟1 

𝑟𝑟1 + 𝑟𝑟2
2

Figure 4.4 



212   | Section Q4 

Quadratic Equations and Functions 

Graphing a Quadratic Function Given in a Factored Form 

Graph function 𝑔𝑔(𝑥𝑥) = −(𝑥𝑥 − 2)(𝑥𝑥 + 1).  

First, observe that the graph of function 𝑔𝑔 has the same shape 
as the graph of the basic parabola, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2. Since the 
leading coefficient is negative, the arms of the parabola open 
down. Also, the graph intersects the 𝑥𝑥-axis at 2 and −1. So, 
the first coordinate of the vertex is the average of 2 and −1, 
which is 1

2
. The second coordinate is 

𝑔𝑔 �
1
2
� = −�

1
2
− 2� �

1
2

+ 1� =  −�−
3
2
� �

3
2
� =

9
4

Therefore, function 𝑔𝑔 can be graphed by connecting the 
vertex, �𝟏𝟏

𝟐𝟐
, 𝟗𝟗
𝟒𝟒
�, and the 𝑥𝑥-intercepts, (−1,0) and (2,0), with a 

parabolic curve, as in Figure 4.5. For a more precise graph, we may additionally plot the 
𝑦𝑦-intercept, 𝑔𝑔(0) = 2, and the symmetrical point 𝑔𝑔(1) = 2.  

Using Complete Factorization to Graph a Quadratic Function 

Graph function 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 − 2𝑥𝑥 − 6. 

Since the discriminant ∆= (−2)2 − 4 ∙ 4 ∙ (−6) = 4 + 96 =
100 is a perfect square number, the defining trinomial is 
factorable. So, to graph function 𝑓𝑓, we may want to factor it 
first. Notice that the GCF of all the terms is 2. So, 𝑓𝑓(𝑥𝑥) =
2(2𝑥𝑥2 − 𝑥𝑥 − 3). Then, using factoring techniques discussed 
in Section F2, we obtain 𝑓𝑓(𝑥𝑥) = 2(2𝑥𝑥 − 3)(𝑥𝑥 + 1). This 
form allows us to identify the roots (or zeros) of function 𝑓𝑓, 
which are 3

2
 and −1. So, the first coordinate of the vertex is 

the average of  3
2

= 1.5  and −1, which is 1.5+(−1)
2

= 0.5
2

=
0.25. The second coordinate can be calculated by evaluating  

𝑓𝑓(0.25) = 2(2 ∙ 0.25 − 3)(0.25 + 1) =  2(0.5− 3)(1.25) = 2(−2.5)(1.25) = −6.25 

So, we can graph function 𝑓𝑓 by connecting its vertex, (𝟎𝟎.𝟐𝟐𝟐𝟐,−𝟔𝟔.𝟐𝟐𝟐𝟐), and its 𝑥𝑥-intercepts, 
(−1,0) and (1.5,0), with a parabolic curve, as in Figure 4.6. For a more precise graph, we 
may additionally plot the 𝑦𝑦-intercept, 𝑓𝑓(0) = −6, and by symmetry, 𝑓𝑓(0.5) = −6. 

Observation: Since 𝑥𝑥-intercepts of a parabola are the solutions (zeros) of its equation, the equation of a 
parabola with 𝑥𝑥-intercepts at 𝒓𝒓𝟏𝟏 and 𝒓𝒓𝟐𝟐 can be written as 

𝒚𝒚 = 𝒂𝒂(𝒙𝒙 − 𝒓𝒓𝟏𝟏)(𝒙𝒙 − 𝒓𝒓𝟐𝟐), 

for some real coefficient 𝒂𝒂 ≠ 0. 

  Figure 4.5 

Solution 

−1 𝑥𝑥 

𝒈𝒈(𝒙𝒙) = −(𝒙𝒙 − 𝟐𝟐)(𝒙𝒙+ 𝟏𝟏) 

2 

2 

                     Figure 4.6

Solution 

−1 𝑥𝑥 

𝒈𝒈(𝒙𝒙) = −(𝒙𝒙 − 𝟐𝟐)(𝒙𝒙+ 𝟏𝟏) 

2 

2 



Section Q4 |   213  

Properties of Quadratic Functions and Optimization Problems 

Finding an Equation of a Quadratic Function Given Its Solutions 

a. Find an equation of a quadratic function whose graph passes the 𝑥𝑥-axis at −1 and 3.
b. Find an equation of a quadratic function whose graph passes the 𝑥𝑥-axis at −1 and 3

and the 𝑦𝑦-axis at −4.
c. Write a quadratic equation with integral coefficients knowing that the solutions of this

equation are 1
2
 and −2

3
. 

a. 𝑥𝑥-intercepts of a function are the zeros of this function. So, −1 and 3 are the zeros of
the quadratic function. This means that the defining formula for such function should
include factors �𝑥𝑥 − (−1)� and (𝑥𝑥 − 3). So, it could be

𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)(𝑥𝑥 − 3). 

Notice that this is indeed a quadratic function with 𝑥𝑥-intercepts at −1 and 3. Hence, it 
satisfies the conditions of the problem. 

b. Using the solution to Example 6a, notice that any function of the form

𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 + 1)(𝑥𝑥 − 3), 

where 𝑎𝑎 is a nonzero real number, is a quadratic function with 𝑥𝑥-intercepts at −1 and 
3. To guarantee that the graph of our function passes through the point (0,−4), we
need to find the particular value of the coefficient 𝑎𝑎. This can be done by substituting
𝑥𝑥 = 0 and 𝑓𝑓(𝑥𝑥) = −4 into the function’s equation and solving it for 𝑎𝑎. Thus,

−4 = 𝑎𝑎(0 + 1)(0 − 3)

−4 = −3𝑎𝑎

𝑎𝑎 = 4
3
, 

and the desired function is  𝑓𝑓(𝑥𝑥) = 4
3

(𝑥𝑥 + 1)(𝑥𝑥 − 3). 

c. First, observe that 1
2
 is a solution to the linear equation 2𝑥𝑥 − 1 = 0. Similarly, −2

3
 is a 

solution to the equation 3𝑥𝑥 + 2 = 0. Multiplying these two equations side by side, we 
obtain a quadratic equation 
(2𝑥𝑥 − 1)(3𝑥𝑥 + 2) = 0 

that satisfies the conditions of the problem. 

Note: Here, we could create the desired equation by writing 

 �𝑥𝑥 − 1
2
� �𝑥𝑥 − �−2

3
�� = 0 

and then multiplying it by the 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝟔𝟔 = 𝟐𝟐 ∙ 𝟑𝟑 

 𝟐𝟐 �𝑥𝑥 − 1
2
� 𝟑𝟑 �𝑥𝑥 + 2

3
� = 𝟔𝟔 ∙ 0 

 (2𝑥𝑥 − 1)(3𝑥𝑥 + 2) = 0 

Solution 

−1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟒𝟒
𝟑𝟑

(𝒙𝒙+ 𝟏𝟏)(𝒙𝒙 − 𝟑𝟑) 

−4

3 
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Optimization Problems 

In many applied problems we are interested in maximizing or minimizing some quantity 
under specific conditions, called constraints. For example, we might be interested in 
finding the greatest area that can be fenced in by a given length of fence, or minimizing the 
cost of producing a container of a given shape and volume. These types of problems are 
called optimization problems. 
Since the vertex of the graph of a quadratic function is either the highest or the lowest point 
of the parabola, it can be used in solving optimization problems that can be modeled by a 
quadratic function. 

The vertex of a parabola provides the following information. 
• The 𝑦𝑦-value of the vertex gives the maximum or minimum value of 𝑦𝑦.
• The 𝑥𝑥-value tells where the maximum or minimum occurs.

Maximizing Area of a Rectangular Region 

John has 60 meters of fencing to enclose a rectangular field by his barn. Assuming that the 
barn forms one side of the rectangle, find the maximum area he can enclose and the 
dimensions of the enclosed field that yield this area. 

Let 𝑙𝑙 and 𝑤𝑤 represent the length and width of the enclosed area correspondingly, as 
indicated in Figure 4.7. The 60 meters of fencing is used to cover the distance of twice 
along the width and once along the length. So, we can form the constraint equation 

2𝑤𝑤 + 𝑙𝑙 = 60 

To analyse the area of the field, 
𝐴𝐴 = 𝑙𝑙𝑙𝑙, 

we would like to express it as a function of one variable, for example 𝑤𝑤. To do this, we can 
solve the constraint equation (1) for 𝑙𝑙 and substitute the obtained expression into the 
equation of area, (2). Since 𝑙𝑙 = 60 − 2𝑤𝑤, then 

𝐴𝐴 = 𝑙𝑙𝑙𝑙 = (60 − 2𝑤𝑤)𝑤𝑤 

Observe that the graph of the function  𝐴𝐴(𝑤𝑤) = (60 − 2𝑤𝑤)𝑤𝑤  is a parabola that opens down 
and intersects the 𝑥𝑥-axis at 0 and 30. This is because the leading coefficient of (60 − 2𝑤𝑤)𝑤𝑤 
is negative and the roots to the equation (60 − 2𝑤𝑤)𝑤𝑤 = 0 are 0 and 30. These roots are 
symmetrical in the axis of symmetry, which also passes through the vertex of the parabola, 
as illustrated in Figure 4.8. So, the first coordinate of the vertex is the average of the two 
roots, which is 0+30

2
= 15. Thus, the width that would maximize the enclosed area is 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 𝟏𝟏𝟏𝟏 meters. Consequently, the length that would maximize the enclosed area is 
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 60 − 2𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 60 − 2 ∙ 15 = 𝟑𝟑𝟑𝟑 meters. The maximum area represented by the 
second coordinate of the vertex can be obtained by evaluating the function of area at the 
width of 15 meters.   

𝐴𝐴(15) = (60 − 2 ∙ 15)15 = 30 ∙ 15 = 450 m2 

Solution 

(1) 

fenced area 

barn 

𝑙𝑙 

𝑤𝑤 𝑤𝑤 

Figure 4.7 (2) 

𝑤𝑤 

𝑨𝑨(𝒘𝒘) = (𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐)𝒘𝒘 

30 0 15 

Figure 4.8 
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So, the maximum area that can be enclosed by 60 meters of fencing is 450 square meters, 
and the dimensions of this rectangular area are 15 by 30 meters.        

Minimizing Average Unit Cost 

A company producing skateboards has determined that when 𝑥𝑥 hundred skateboards are 
produced, the average cost of producing one skateboard can be modelled by the function  

𝐶𝐶(𝑥𝑥) = 0.15𝑥𝑥2 − 0.75𝑥𝑥 + 1.5, 

where 𝐶𝐶(𝑥𝑥) is in hundreds of dollars. How many skateboards should be produced to 
minimize the average cost of producing one skateboard? What would this cost be? 

Since 𝐶𝐶(𝑥𝑥) is a quadratic function, to find its minimum, it is enough to find the vertex of 
the parabola 𝐶𝐶(𝑥𝑥) = 0.15𝑥𝑥2 − 0.75𝑥𝑥 + 1.5. This can be done either by completing the 
square or by using the formula for the vertex, �−𝑏𝑏

2𝑎𝑎
, −∆
4𝑎𝑎
�. We will do the latter. So, the vertex 

is 

�
−𝑏𝑏
2𝑎𝑎

,
−∆
4𝑎𝑎
� = �

0.75
0.3

,
−(0.752 − 4 ∙ 0.15 ∙ 1.5)

0.6
� = �2.5,

−(0.5625 − 1.35)
0.6

�

= �2.5,
0.3375

0.6
� = (𝟐𝟐.𝟓𝟓,𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓). 

This means that the lowest average unit cost can be achieved when 250 skateboards are 
produced, and that the lowest average cost of producing a skateboard would be $56.25. 

Q.4  Exercises

Convert each quadratic function to its vertex form. Then, state the coordinates of the vertex. 

1. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 6𝑥𝑥 + 10 2. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥 − 5 3. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 3

4. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥 + 7 5. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 7𝑥𝑥 + 3 6. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 4𝑥𝑥 + 1

7. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 6𝑥𝑥 + 12 8. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 − 8𝑥𝑥 + 10 9. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥2 + 3𝑥𝑥 − 1 

Use the vertex formula, �− 𝑏𝑏
2𝑎𝑎

, −∆
4𝑎𝑎
�, to find the coordinates of the vertex of each parabola. 

10. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 6𝑥𝑥 + 3 11. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 3𝑥𝑥 − 5 12. 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥2 − 4𝑥𝑥 − 7  

13. 𝑓𝑓(𝑥𝑥) = −3𝑥𝑥2 + 6𝑥𝑥 + 5 14. 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥2 − 7𝑥𝑥 15. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 6𝑥𝑥 − 20

For each parabola, state its vertex, opening and shape. Then graph it and state the domain and range. 

16. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 5𝑥𝑥 17. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3𝑥𝑥 18. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 − 5

19. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 6𝑥𝑥 − 3 20. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 3𝑥𝑥 + 2 21. 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 12𝑥𝑥 + 18

Solution 
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22. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 + 3𝑥𝑥 − 1 23. 𝑓𝑓(𝑥𝑥) = −2𝑥𝑥2 + 4𝑥𝑥 + 1 24. 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 4𝑥𝑥 + 2

For each quadratic function, state its zeros (roots), coordinates of the vertex, opening and shape. Then graph it 
and identify its extreme (minimum or maximum) value as well as where it occurs.  

25. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)(𝑥𝑥 + 2) 26. 𝑓𝑓(𝑥𝑥) = −(𝑥𝑥 + 3)(𝑥𝑥 − 1) 27. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥

28. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 5𝑥𝑥 29. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 8𝑥𝑥 + 16 30. 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 − 4𝑥𝑥 − 4

31. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥2 − 1) 32. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 3)(𝑥𝑥 − 4) 33. 𝑓𝑓(𝑥𝑥) = −3
2

(𝑥𝑥 − 1)(𝑥𝑥 − 5) 

Find an equation of a quadratic function satisfying the given conditions. 

34. passes the 𝑥𝑥-axis at −2 and 5 35. has 𝑥𝑥-intercepts at 0 and 2
5

36. passes the 𝑥𝑥-axis at −3 and −1 and 𝑦𝑦-axis at 2 37. 𝑓𝑓(1) = 0, 𝑓𝑓(4) = 0, 𝑓𝑓(0) = 3

Write a quadratic equation with the indicated solutions using only integral coefficients. 

38. −5 and 6  39. 0 and 1
3
     40. −2

5
 and 3

4
  41. 2

42. Suppose the 𝑥𝑥-intercepts of the graph of a parabola are (𝑥𝑥1, 0) and (𝑥𝑥2, 0). What is the equation of the axis
of symmetry of this graph?

43. How can we determine the number of 𝑥𝑥-intercepts of the graph of a quadratic function without graphing the
function?

True or false? Explain. 

44. The domain and range of a quadratic function are both the set of real numbers.

45. The graph of every quadratic function has exactly one 𝑦𝑦-intercept.

46. The graph of 𝑦𝑦 = −2(𝑥𝑥 − 1)2 − 5 has no 𝑥𝑥-intercepts.

47. The maximum value of 𝑦𝑦 in the function 𝑦𝑦 = −4(𝑥𝑥 − 1)2 + 9 is 9.

48. The value of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 + 1 is at its minimum when 𝑥𝑥 = 0.

49. The graph of 𝑓𝑓(𝑥𝑥) = 9𝑥𝑥2 + 12𝑥𝑥 + 4 has one 𝑥𝑥-intercept and one 𝑦𝑦-intercept.

50. If a parabola opens down, it has two 𝑥𝑥-intercepts.

Solve each problem. 

51. A ball is projected from the ground straight up with an initial velocity of 24.5 m/sec. The function ℎ(𝑡𝑡) =
−4.9𝑡𝑡2 + 24.5𝑡𝑡 allows for calculating the height ℎ(𝑡𝑡), in meters, of the ball above the ground after 𝑡𝑡 seconds.
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What is the maximum height reached by the ball? In how many seconds should we expect the ball to come 
back to the ground? 

52. A firecracker is fired straight up and explodes at its maximum height above the ground. The function ℎ(𝑡𝑡) =
−4.9𝑡𝑡2 + 98𝑡𝑡 allows for calculating the height ℎ(𝑡𝑡), in meters, of the firecracker above the ground 𝑡𝑡 seconds
after it was fired. In how many seconds after firing should we expect the firecracker to explode and at what
height?

53. Antonio prepares and sells his favourite desserts at a market stand. Suppose his daily cost, C,
in dollars, to sell 𝑛𝑛 desserts can be modelled by the function 𝐶𝐶(𝑛𝑛) = 0.5𝑛𝑛2 − 30𝑛𝑛 + 350.
How many of these desserts should he sell to minimize the cost and what is the minimum
cost?

54. Chris has a hot-dog stand. His daily cost, C, in dollars, to sell n hot-dogs can be modelled by the function
𝐶𝐶(𝑛𝑛) = 0.1𝑛𝑛2 − 15𝑛𝑛 + 700. How many hotdogs should he sell to minimize the cost and what is the
minimum cost?

55. Find two positive numbers with a sum of 32 that would produce the maximum product.

56. Find two numbers with a difference of 32 that would produce the minimum product.

57. Luke uses 16 meters of fencing to enclose a rectangular area for his baby goats. The enclosure shares one
side with a large barn, so only 3 sides need to be fenced. If Luke wishes to enclose the greatest area, what
should the dimensions of the enclosure be?

58. Ryan uses 60 meters of fencing to enclose a rectangular area for his livestock. He plans to subdivide the area
by placing additional fence down the middle of the rectangle to separate different types of livestock. What
dimensions of the overall rectangle will maximize the total area of the enclosure?

59. Julia works as a tour guide. She charges $58 for an individual tour. When more people come for a tour, she
charges $2 less per person for each additional person, up to 25 people.
a. Express the price per person 𝑃𝑃 as a function of the number of people 𝑛𝑛, for 𝑛𝑛 ∈ {1,2, … ,25}.
b. Express her revenue, 𝑅𝑅, as a function of the number of people on tour.
c. How many people on tour would maximize Julia’s revenue?
d. What is the highest revenue she can achieve?

60. One-day adult passes for The Mission Folk Festival cost $50. At this price, the organizers
of the festival expect about 1300 people to purchase the pass. Suppose that the organizers observe that every
time they increase the cost per pass by 5$, the number of passes sold decrease by about 100.
 a. Express the number of passes sold, 𝑁𝑁, as a function of the cost, 𝑐𝑐, of a one-day pass.
 b. Express the revenue, 𝑅𝑅, as a function of the cost, 𝑐𝑐, of a one-day pass.
c. How much should a one-day pass costs to maximize the revenue?
d. What is the maximum revenue?

https://commons.wikimedia.org/wiki/File:Rainbow_Tower_Waikiki_(16178632002).jpg
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Trigonometry 
Trigonometry is the branch of mathematics that studies the relations between the sides and 
angles of triangles. The word “trigonometry” comes from the Greek trigōnon (triangle) 
and metron (measure.) It was first studied by the Babylonians, Greeks, and Egyptians, and 
used in surveying, navigation, and astronomy. Trigonometry is a powerful tool that allows 
us to find the measures of angles and sides of triangles, without physically measuring them, 
and areas of plots of land. We begin our study of trigonometry by studying angles and their degree measures. 

T1 Angles and Degree Measure 

Two distinct points 𝑨𝑨 and 𝑩𝑩 determine a line denoted  𝑨𝑨𝑨𝑨�⃖���⃗ .  The portion of the line between 
𝑨𝑨 and 𝑩𝑩, including the points 𝑨𝑨 and 𝑩𝑩, is called a line segment (or simply, a segment) 𝑨𝑨𝑨𝑨����. 
The portion of the line 𝑨𝑨𝑨𝑨�⃖���⃗  that starts at 𝑨𝑨 and continues past 𝑩𝑩 is called the ray 𝑨𝑨𝑨𝑨������⃗  (see 
Figure 1a.) Point 𝑨𝑨 is the endpoint of this ray.  

Two rays 𝑨𝑨𝑨𝑨������⃗  and 𝑨𝑨𝑨𝑨�����⃗  sharing the same endpoint 𝑨𝑨, cut the plane into two separate 
regions. The union of the two rays and one of those regions is called an angle, the common 
endpoint 𝑨𝑨 is called a vertex, and the two rays are called sides or arms of this angle. 
Customarily, we draw a small arc connecting the two rays to indicate which of the two 
regions we have in mind.  

In trigonometry, an angle is often identified with its measure, which is the amount of 
rotation that a ray in its initial position (called the initial side) needs to turn about the 
vertex to come to its final position (called the terminal side), as in Figure 1b. If the rotation 
from the initial side to the terminal side is counterclockwise, the angle is considered to be 
positive. If the rotation is clockwise, the angle is negative (see Figure 1c). 

An angle is named either after its vertex, its rays, or the amount of rotation between 
the two rays. For example, an angle can be denoted ∠𝑨𝑨, ∠𝑩𝑩𝑩𝑩𝑩𝑩, or ∠𝜽𝜽, where the sign ∠ 
(or ∡) simply means an angle. Notice that in the case of naming an angle with the use of 
more than one letter, like ∠𝑩𝑩𝑩𝑩𝑩𝑩, the middle letter (𝑨𝑨) is associated with the vertex and the 
angle is oriented from the ray containing the first point (𝑩𝑩) to the ray containing the third 
point (𝑪𝑪). Customarily, angles (often identified with their measures) are denoted by Greek 
letters such as 𝜶𝜶,𝜷𝜷,𝜸𝜸,𝜽𝜽, etc. 

An angle formed by rotating a ray counterclockwise (in short, ccw) exactly one complete 
revolution around its vertex is defined to have a measure of 360 degrees, which is 
abbreviated as 360°. 

Definition 1.1 One degree (𝟏𝟏°) is the measure of an angle that is 1
360

 part of a complete revolution. 

One minute (𝟏𝟏′), is the measure of an angle that is  1
60

 part of a degree. 

One second (𝟏𝟏′′) is the measure of an angle that is  1
60

 part of a minute. 

Therefore 𝟏𝟏° = 𝟔𝟔𝟔𝟔′ and 𝟏𝟏′ = 𝟔𝟔𝟔𝟔′′. 

A fractional part of a degree can be expressed in decimals (e.g. 29.68°) or in minutes and 
seconds (e.g. 29°40'48"). We say that the first angle is given in decimal form, while the 
second angle is given in DMS (Degree, Minute, Second) form.  

Figure 1a 

Figure 1b 

Figure 1c 
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Converting Between Decimal and DMS Form 

Convert as indicated. 
a. 29.68° to DMS form
b. 46°18′21′′ to decimal degree form

a. 29.68° can be converted to DMS form, using any calculator with  𝐃𝐃𝐃𝐃𝐃𝐃  or  ° ′ ′′  key. Solution 
To do it by hand, separate the fractional part of a degree and use the conversion 
factor 1° = 60′.  

𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔° = 29° + 0.68° 
 = 29° + 0.68 ∙ 60′ = 29° + 40.8′ 

  Similarly, to convert the fractional part of a minute to seconds, separate it and use the 
conversion factor 1′ = 60′′. So we have 

29.68° = 29° + 40′ + 0.8 ∙ 60′′ = 𝟐𝟐𝟐𝟐°𝟒𝟒𝟒𝟒′𝟒𝟒𝟒𝟒′′ 

b. Similarly, 46°18′21′′ can be converted to the decimal form, using the  𝐃𝐃𝐃𝐃𝐃𝐃  or  ° ′ ′′

key. To do it by hand, we use the conversions 1′ = � 1
60
�
∘

and 1′′ = � 1
3600

�
∘
.

𝟒𝟒𝟒𝟒°𝟏𝟏𝟏𝟏′𝟐𝟐𝟐𝟐′′ = �46 + 18 ∙ 1
60

+ 21 ∙ 1
3600

�
∘
≅ 𝟒𝟒𝟒𝟒.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑° 

Adding and Subtracting Angles in DMS Form 

Perform the indicated operations. 
a. 36°58′21′′ + 5°06′45′′ b. 36°17′ − 15°46′15′′

a. First, we add degrees, minutes, and seconds separately. Then, we convert each 60′′Solution 
into 1′ and each 60′ into 1°. Finally, we add the degrees, minutes, and seconds again.

36°58′21′′ + 5°06′45′′ = 41° + 64′ + 66′′
  = 41° + 1°04′ + 1′06′′ = 𝟒𝟒𝟒𝟒°𝟎𝟎𝟎𝟎′𝟎𝟎𝟎𝟎′′   

b. We can subtract within each denomination, degrees, minutes, and seconds, even if the
answer is negative. Then, if we need more minutes or seconds to perform the
remaining subtraction, we convert 1° into 60′ or 1′ into 60′′ to finish the calculation.

36°17′ − 15°46′15′′ = 21° − 29′ − 15′′

= 20° + 60′ − 29′ − 15′′ = 20° + 31′ − 15′′ 
= 20° + 30′ + 60′′ − 15′′ = 𝟐𝟐𝟐𝟐°𝟑𝟑𝟑𝟑′𝟒𝟒𝟒𝟒′′ 
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Figure 3 

Angles in Standard Position 

In trigonometry, we often work with angles in standard position, which means angles 
located in a rectangular system of coordinates with the vertex at the origin and the initial 
side on the positive 𝑥𝑥-axis, as in Figure 2. With the notion of angle as an amount of rotation 
of a ray to move from the initial side to the terminal side of an angle, the standard position 
allows us to represent infinitely many angles with the same terminal side. Those are the 
angles produced by rotating a ray from the initial side by full revolutions beyond the 
terminal side, either in a positive or negative direction. Such angles share the same initial 
and terminal sides and are referred to as coterminal angles.  

For example, angles −330°, 30°, 390°, 750°, and so on, are coterminal. 

Definition 1.2 Angles 𝜶𝜶 and 𝜷𝜷 are coterminal, if and only if there is an integer 𝒌𝒌, such that 

𝜶𝜶 = 𝜷𝜷 + 𝒌𝒌 ∙ 𝟑𝟑𝟑𝟑𝟑𝟑° 

Finding Coterminal Angles 

Find one positive and one negative angle that is closest to 0° and coterminal with 
a. 80°
b. −530°

a. To find the closest to 0° positive angle coterminal with 80° we add one completeSolution 
revolution, so we have 80° + 360° = 𝟒𝟒𝟒𝟒𝟒𝟒°.
Similarly, to find the closest to 0° negative angle coterminal with 80° we subtract one
complete revolution, so we have 80° − 360° = −𝟐𝟐𝟐𝟐𝟐𝟐°. 

b. This time, to find the closest to 0° positive angle coterminal with −530° we need to
add two complete revolutions: −530° + 2 ∙ 360° = 𝟏𝟏𝟏𝟏𝟏𝟏°. 
To find the closest to 0° negative angle coterminal with −530°, it is enough to add
one revolution: −530° + 360° = −𝟏𝟏𝟏𝟏𝟏𝟏°.

Definition 1.3 Let 𝜶𝜶 be the measure of an angle. Such an angle is called 
acute,  if 𝜶𝜶 ∈ (𝟎𝟎°,𝟗𝟗𝟗𝟗°); 
right,  if 𝜶𝜶 = 𝟗𝟗𝟗𝟗°; (right angle is marked by the symbol ∟) 
obtuse,  if 𝜶𝜶 ∈ (𝟗𝟗𝟗𝟗°,𝟏𝟏𝟏𝟏𝟏𝟏°); and 
straight,  if 𝜶𝜶 = 𝟏𝟏𝟏𝟏𝟏𝟏°. 

Angles that sum to 𝟗𝟗𝟗𝟗° are called complementary. 
Angles that sum to 𝟏𝟏𝟏𝟏𝟏𝟏° are called supplementary. 

Figure 2 

30° 

390° 

−330° 
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The two axes divide the plane into 4 regions, called quadrants. They are numbered 
counterclockwise, starting with the top right one, as in Figure 4. 
An angle in standard position is said to lie in the quadrant in which its terminal side lies. 
For example, an acute angle is in quadrant I and an obtuse angle is in quadrant II. 
Angles in standard position with their terminal sides along the 𝑥𝑥-axis or 𝑦𝑦-axis, such as 
𝟎𝟎°,𝟗𝟗𝟗𝟗°,𝟏𝟏𝟏𝟏𝟏𝟏°,𝟐𝟐𝟐𝟐𝟐𝟐°, and so on, are called quadrantal angles. 

Classifying Angles by Quadrants 

Draw each angle in standard position. Determine the quadrant in which each angle lies or 
classify the angle as quadrantal. 
a. 125° b. −50° c. 270° d. 210°

Solution a. b. c. d. 

125° is in 𝐐𝐐𝐐𝐐𝐐𝐐 −50° is in 𝐐𝐐𝐐𝐐𝐐𝐐 quadrantal angle 210° is in 𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐 

Finding Complementary and Supplementary Angles 

Find the complement and the supplement of 57°. 

Since complementary angles add to 90°, the complement of 57° is 90° − 57° = 33°. Solution 
Since supplementary angles add to 180°, the supplement of 57° is 180° − 57° = 123°. 

T.1  Exercises

Convert each angle measure to decimal degrees. Round the answer to the nearest thousandth of a degree. 

1. 20°04′30′′ 2. 71°45′ 3. 274°18′15′′

4. 34°41′07′′ 5. 15°10′05′′ 6. 64°51′35′′

Convert each angle measure to degrees, minutes, and seconds. Round the answer to the nearest second. 

7. 18.0125° 8. 89.905° 9. 65.0015°

Figure 4 
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10. 184.3608° 11. 175.3994° 12. 102.3771°

Perform each calculation. 

13. 62°18′ + 21°41′ 14. 71°58′ + 47°29′ 15. 65°15′ − 31°25′

16. 90° − 51°28′ 17. 15°57′45′′ + 12°05′18′′ 18. 90° − 36°18′47′′

Give the complement and the supplement of each angle. 

19. 30° 20. 60° 21. 45° 22. 86.5° 23. 15°30′

24. Give an expression representing the complement of a 𝜽𝜽° angle.

25. Give an expression representing the supplement of a 𝜽𝜽° angle.

Sketch each angle in standard position. Draw an arrow representing the correct amount of rotation. Give the 
quadrant of each angle or identify it as a quadrantal angle. 

26. 75° 27. 135° 28. −60° 29. 270° 30. 390°

31. 315° 32. 510° 33. −120° 34. 240° 35. −180°

Find the angle of least positive measure coterminal with each angle. 

36. −30° 37. 375° 38. −203° 39. 855° 40. 1020°

Give an expression that generates all angles coterminal with the given angle. Use 𝒌𝒌 to represent any integer. 

41. 30° 42. 45° 43. 0° 44. 90° 45. 𝛼𝛼°

Find the degree measure of the smaller angle formed by the hands of a clock at the following times. 

46.      47. 3: 15   48. 1: 45 

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 
𝟏𝟏𝟏𝟏 

𝟗𝟗 
𝟖𝟖 
𝟕𝟕 𝟔𝟔 𝟓𝟓 

𝟒𝟒 
𝟑𝟑 

𝟐𝟐 
𝟏𝟏 
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T2 Trigonometric Ratios of an Acute Angle and of Any Angle 

Generally, trigonometry studies ratios between sides in right angle triangles. When working 
with right triangles, it is convenient to refer to the side opposite to an angle, the side 
adjacent to (next to) an angle, and the hypotenuse, which is the longest side, opposite to 
the right angle. Notice that the opposite and adjacent sides depend on the angle of reference 
(one of the two acute angles.) However, the hypotenuse stays the same, regardless of the 
choice of the angle of reference. See Figure 2.1. 

Notice that any two right triangles with the same acute angle 𝜽𝜽 are similar. See Figure 2.2. 
Similar means that their corresponding angles are congruent and their corresponding sides 
are proportional. For instance, assuming notation as on Figure 2.2, we have 

𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴′ =

𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴′ =

𝐵𝐵𝐵𝐵
𝐵𝐵′𝐶𝐶′ , 

or equivalently 

𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 =

𝐵𝐵′𝐶𝐶′
𝐴𝐴𝐴𝐴′ ,

𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 =

𝐴𝐴𝐴𝐴′
𝐴𝐴𝐴𝐴′ ,

𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 =

𝐵𝐵′𝐶𝐶′
𝐴𝐴𝐴𝐴′ . 

Therefore, the ratios of any two sides of a right triangle does not depend on the size of the 
triangle but only on the size of the angle of reference. See the following demonstration. 
This means that we can study those ratios of sides as functions of an acute angle. 

Trigonometric Functions of Acute Angles 

Definition 2.1 Given a right angle triangle with an acute angle 𝜽𝜽, the three primary trigonometric 
ratios of the angle 𝜽𝜽, called sine, cosine, and tangent (abbreviation: sin, cos, tan), are 
defined as follows: 

𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽 =
𝑶𝑶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑯𝑯𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
, 𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 =

𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑯𝑯𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

 ,       𝐭𝐭𝐭𝐭𝐭𝐭𝜽𝜽 =
𝑶𝑶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

For easier memorization, we can use the acronym  SOH – CAH – TOA  (read: so – ka – 
toe – ah), formed from the first letter of the function and the corresponding ratio. 

The three reciprocal trigonometry ratios of the angle 𝜽𝜽, called cosecant, secant, and 
cotangent (abbreviation: csc, sec, cot), are reciprocals of the sine, cosine, and tangent 
ratios, respectively, and are defined as follows: 

𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 =
𝑯𝑯𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑶𝑶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 =
𝑯𝑯𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 ,       𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽 =
𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑶𝑶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Figure 2.2 

Figure 2.1 

angle of 
reference 

https://www.youtube.com/watch?v=a_T0wLI-lq4
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Identifying Sides of a Right Triangle to Form Trigonometric Ratios 

Identify the hypotenuse, opposite, and adjacent side of angle 𝜃𝜃 
and state values of the six trigonometric ratios.  

Side 𝐴𝐴𝐴𝐴 is the hypotenuse, as it lies across from the right angle. Solution 
Side 𝐵𝐵𝐵𝐵 is the adjacent, as it is part of the angle 𝜃𝜃 other than 
hypotenuse. 
Side 𝐴𝐴𝐴𝐴 is the opposite, as it lies across from angle 𝜃𝜃.  
Therefore,  sin𝜃𝜃 = 𝑜𝑜𝑜𝑜𝑜𝑜.

ℎ𝑦𝑦𝑦𝑦.
= 𝟒𝟒

𝟓𝟓
,  cos 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎.

ℎ𝑦𝑦𝑦𝑦.
= 𝟑𝟑

𝟓𝟓
,  tan𝜃𝜃 = 𝑜𝑜𝑜𝑜𝑜𝑜.

𝑎𝑎𝑎𝑎𝑎𝑎.
= 𝟒𝟒

𝟑𝟑
 , csc𝜃𝜃 = ℎ𝑦𝑦𝑦𝑦.

𝑜𝑜𝑜𝑜𝑜𝑜.
= 𝟓𝟓

𝟒𝟒
, 

sec𝜃𝜃 = ℎ𝑦𝑦𝑦𝑦.
𝑎𝑎𝑎𝑎𝑎𝑎.

= 𝟓𝟓
𝟑𝟑
, and cot 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎.

𝑜𝑜𝑜𝑜𝑜𝑜.
= 𝟑𝟑

𝟒𝟒
 . 

Pythagorean Theorem A triangle 𝑨𝑨𝑨𝑨𝑨𝑨 is right with ∠𝐶𝐶 = 90° if and only if 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 = 𝒄𝒄𝟐𝟐. 

Convention:  The side opposite the given vertex (or angle) is named after the vertex, except that by a lower case 
rather than a capital letter. For example, the side opposite vertex A is called a. 

Finding Values of Trigonometric Ratios With the Aid of Pythagorean Theorem 

Given the triangle, find the exact values of the sine, cosine, and tangent ratios for angle 𝜃𝜃. 
a.  b.  

a. Let 𝒉𝒉 denote the hypotenuse. By the Pythagorean Theorem, we haveSolution 

ℎ2 = 22 + 52 
ℎ = √4 + 25 = √29 

Now, we are ready to state the exact values of the three trigonometric ratios: 

sin𝜃𝜃 =
2
√29

∙
√29
√29

=
𝟐𝟐√𝟐𝟐𝟐𝟐
𝟐𝟐𝟐𝟐

cos 𝜃𝜃 =
5
√29

∙
√29
√29

=
𝟓𝟓√𝟐𝟐𝟐𝟐
𝟐𝟐𝟐𝟐

tan𝜃𝜃 =
𝟐𝟐
𝟓𝟓

Note: 
It is customary to 
rationalize the 
denominator. 

 
√29 

𝐴𝐴 

𝐶𝐶 

𝐵𝐵 
4 

3 

5 

𝜃𝜃 
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b. Let 𝒂𝒂 denote the adjacent side. By the Pythagorean Theorem, we have

𝑎𝑎2 + 52 = 82 
𝑎𝑎 = �82 − 52 = √64 − 25 = √39 

Now, we are ready to state the exact values of the three trigonometric ratios: 

sin𝜃𝜃 =
𝟓𝟓
𝟖𝟖

cos 𝜃𝜃 =
√𝟑𝟑𝟑𝟑
𝟖𝟖

tan𝜃𝜃 =
5
√39

∙
√39
√39

=
𝟓𝟓√𝟑𝟑𝟑𝟑
𝟑𝟑𝟑𝟑

Trigonometric Functions of Any Angle 

Notice that any angle of a right triangle, other than the right angle, is acute. Thus, the “SOH – CAH – TOA” 
definition of the trigonometric ratios refers to acute angles only. However, we can extend this definition to include 
all angles. This can be done by observing our right triangle within the Cartesian Coordinate System. 

Let triangle 𝑂𝑂𝑂𝑂𝑂𝑂 with ∠𝑄𝑄 = 90° be placed in the coordinate system so that 𝑂𝑂 
coincides with the origin, 𝑄𝑄 lies on the positive part of the 𝑥𝑥-axis, and 𝑃𝑃 lies in the 
first quadrant. See Figure 2.3. Let (𝑥𝑥, 𝑦𝑦) be the coordinates of the point P, and let 𝜃𝜃 
be the measurement of ∠𝑄𝑄𝑄𝑄𝑄𝑄. This way, angle 𝜃𝜃 is in standard position and the 
triangle 𝑂𝑂𝑂𝑂𝑂𝑂 is obtained by projecting point 𝑃𝑃 perpendicularly onto the 𝑥𝑥-axis. Thus 
in this setting, the position of point 𝑃𝑃 actually determines both the angle 𝜃𝜃 and the 
⊿𝑂𝑂𝑂𝑂𝑂𝑂. Observe that the coordinates of point 𝑃𝑃 (𝒙𝒙 and 𝒚𝒚) really represent the length 
of the adjacent and the opposite side, correspondingly. Since the length of the 
hypotenuse represents the distance of the point 𝑃𝑃 from the origin, it is often denoted 
by 𝒓𝒓 (from radius.) 

By rotating the radius 𝒓𝒓 and projecting the point 𝑃𝑃 perpendicularly onto 𝑥𝑥-axis (follow the 
green dotted line from 𝑃𝑃 to 𝑄𝑄 in Figure 2.4), we can obtain a right triangle corresponding 
to any angle 𝜃𝜃, not only an acute angle. Since the coordinates of a point in a plane can be 
negative, to establish a correcpondence between the coordinates 𝑥𝑥 and 𝑦𝑦 of the point 𝑃𝑃, and 
the distances 𝑂𝑂𝑂𝑂 and 𝑄𝑄𝑄𝑄, it is convenient to think of directed distances rather than just 
distances. Distance becomes directed if we assign a sign to it. So, lets assign a positive sign 
to horizontal or vertical distances that follow the directions of the corresponding number 
lines, and a negative sign otherwise. For example, the directed distance 𝑂𝑂𝑂𝑂 = 𝑥𝑥 in Figure 
2.3 is positive because the direction from 𝑂𝑂 to 𝑄𝑄 follows the order on the 𝑥𝑥-axis while the 
directed distance 𝑂𝑂𝑂𝑂 = 𝑥𝑥 in Figure 2.4 is negative because the direction from 𝑂𝑂 to 𝑄𝑄 is 
against the order on the 𝑥𝑥-axis. Likewise, the directed distance 𝑄𝑄𝑄𝑄 = 𝑦𝑦 is positive for 
angles in the first and second quadrant (as in Figure 2.3 and 2.4), and it is negative for 
angles in the third and fourth quadrant (convince yourself by drawing a diagram). 

Figure 2.3 

√39 

Figure 2.4 
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Definition 2.2 Let 𝑃𝑃(𝒙𝒙,𝒚𝒚) be any point, different than the origin, on the terminal side of an angle 𝜽𝜽 in 
standard position. Also, let  𝒓𝒓 = �𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐  be the distance of the point 𝑃𝑃 from the origin. 
We define 

𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽 =
𝒚𝒚
𝒓𝒓

, 𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 =
𝒙𝒙
𝒓𝒓

 ,       𝐭𝐭𝐭𝐭𝐭𝐭 𝜽𝜽 =
𝒚𝒚
𝒙𝒙

 (for 𝑥𝑥 ≠ 0) 

𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽 =
𝒓𝒓
𝒚𝒚

 (for 𝑦𝑦 ≠ 0), 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 =
𝒓𝒓
𝒙𝒙

 (for 𝑥𝑥 ≠ 0),       𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 =
𝒙𝒙
𝒚𝒚

 (for 𝑦𝑦 ≠ 0) 

Observations: • For acute angles, Definition 2.2 agrees with the “SOH – CAH – TOA” Definition 2.1.

• Proportionality of similar triangles guarantees that each point of the same
terminal ray defines the same trigonometric ratio. This means that the
above definition assigns a unique value to each trigonometric ratio for any
given angle regardless of the point chosen on the terminal side of this angle.
Thus, the above trigonometric ratios are in fact functions of any real angle
and these functions are properly defined in terms of 𝑥𝑥, 𝑦𝑦, and 𝑟𝑟.

• Since 𝑟𝑟 > 0, the first two trigonometric functions, sine and cosine, are defined for any
real angle 𝜃𝜃.

• The reamining trigonometric functions, tangent, cosecant, secant, and cotangent, are
defined for all real angles 𝜃𝜃, except for angles that create a zero in the ratio’s
denominator. For example, tangent is defined for all angles except those with terminal
sides on the 𝑦𝑦-axis. This is because the 𝑥𝑥-coordinate of any point on the 𝑦𝑦-axis equals
zero, which cannot be used to create the ratio 𝑦𝑦

𝑥𝑥
. Thus, tangent is a function of all real

angles, except for 90°, 270°, and so on (generally, except for angles of the form 𝟗𝟗𝟗𝟗° +
𝒌𝒌 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏°, where 𝒌𝒌 is an integer).

Evaluating Trigonometric Functions of any Angle in Standard Position 

Find the exact value of the six trigonometric functions of an angle 𝜃𝜃 in standard position 
whose terminal side contains the point  

a. 𝑃𝑃(−2,−3) b. 𝑃𝑃(0,1)

a. To ilustrate the situation, lets sketch the least positive angle 𝜃𝜃 in standard position with
the point 𝑃𝑃(−2,−3) on its terminal side.

To find values of the trigonometric functions, first, we will determine the length of 𝑟𝑟:
𝑟𝑟 = �(−2)2 + (−3)2 = √4 + 9 = √13 

Now, we can state the exact values of the trigonometric functions: 

sin 𝜃𝜃 =
𝑦𝑦
𝑟𝑟

=
−3
√13

=
−𝟑𝟑√𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏

,  csc𝜃𝜃 =
𝑟𝑟
𝑦𝑦

=
√13
−3

= −
√𝟏𝟏𝟏𝟏
𝟑𝟑

Solution 

𝒚𝒚
𝒓𝒓 =

𝒚𝒚′

𝒓𝒓′  

𝒙𝒙
𝒓𝒓 =

𝒙𝒙′

𝒓𝒓′  

𝒚𝒚
𝒙𝒙 =

𝒚𝒚′

𝒙𝒙′ 
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cos 𝜃𝜃 =
𝑥𝑥
𝑟𝑟

=
−2
√13

=
−𝟐𝟐√𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏

 sec𝜃𝜃 =
𝑟𝑟
𝑥𝑥

=
√13
−2

= −
√𝟏𝟏𝟏𝟏
𝟐𝟐

, 

tan𝜃𝜃 =
𝑦𝑦
𝑥𝑥

=
−3
−2

=
𝟑𝟑
𝟐𝟐

,  cot 𝜃𝜃 =
𝑥𝑥
𝑦𝑦

=
−2
−3

=
𝟐𝟐
𝟑𝟑

. 

b. Since  𝑥𝑥 = 0, 𝑦𝑦 = 1, 𝑟𝑟 = √02 + 12 = 1,  then

sin𝜃𝜃 =
𝑦𝑦
𝑟𝑟

=
1 
1

= 𝟏𝟏,                 csc𝜃𝜃 =
𝑟𝑟
𝑦𝑦

=
1 
1

= 𝟏𝟏, 

cos 𝜃𝜃 =
𝑥𝑥
𝑟𝑟

=
0
1

= 𝟎𝟎,    sec𝜃𝜃 =
𝑟𝑟
𝑥𝑥

=
1
0

= 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮, 

tan𝜃𝜃 =
𝑦𝑦
𝑥𝑥

=
1
0

= 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮,  cot 𝜃𝜃 =
𝑥𝑥
𝑦𝑦

=
0
1

= 𝟎𝟎. 

Notice that the measure of the least positive angle 𝜃𝜃 in standard position with the point 
𝑃𝑃(0,1) on its terminal side is 90°. Therefore, we have   

sin 90° = 1 , cos 90° = 0,         tan 90° = undefined 
csc 90° = 1,  sec 90° = 𝐷𝐷𝐷𝐷𝐷𝐷, cot 90° = 0

The values of trigonometric functions of other commonly used quadrantal angles, such as 0°, 180°, 270°, and 
360°, can be found similarly as in Example 3b. These values for the primary functions are summarized in the table 
below. The reader is encouraged to extend the table for the reciprocal functions. 

Table 2.1 Function Values of Quadrantal Angles 

Evaluating Trigonometric Functions Using Basic Identities 

Knowing that cos 𝛼𝛼 = −3
4

 and the angle 𝛼𝛼 is in quadrant II, find 

a. sin𝛼𝛼 b. tan𝛼𝛼

a. We know that cos 𝛼𝛼 = −3
4

= 𝑥𝑥
𝑟𝑟
. Hence, the terminal side of angle 𝛼𝛼 ∈ 𝑄𝑄𝑄𝑄𝑄𝑄 contains a 

point 𝑃𝑃(𝑥𝑥,𝑦𝑦) satisfying the condition 𝑥𝑥
𝑟𝑟

= −3
4
. Since 𝑟𝑟 must be positive, we will assign 

𝑥𝑥 = −3 and 𝑟𝑟 = 4, to model the situation. Using the Pythagorean equation and the 
fact that the 𝑦𝑦-coordinate of any point in the second quadrant is positive, we determine 
the corresponding 𝑦𝑦-value to be 

𝑦𝑦 = �𝑟𝑟2 − 𝑥𝑥2 = �42 − (−3)2 = √16 − 9 = √7. 

𝜽𝜽 
function  𝟎𝟎° 𝟗𝟗𝟗𝟗° 𝟏𝟏𝟏𝟏𝟏𝟏° 𝟐𝟐𝟐𝟐𝟐𝟐° 𝟑𝟑𝟑𝟑𝟑𝟑° 

𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 0 1 0 −1 0 
𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 1 0 −1 0 1 
𝐭𝐭𝐭𝐭𝐭𝐭𝜽𝜽 0 undefined 0 undefined 0 

  we can’t divide 
    by zero!

Solution 
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Now, we are ready to use Definition 2.2 to state the sine value of angle 𝛼𝛼: 

sin𝛼𝛼 =
𝑦𝑦
𝑟𝑟

=
√𝟕𝟕
𝟒𝟒

. 

b. To find the value of tan𝛼𝛼, since we already know the values of 𝑥𝑥,𝑦𝑦, and 𝑟𝑟,  we can
again use Definition 2.2:

tan𝛼𝛼 =
𝑦𝑦
𝑥𝑥

=
√7
−3

= −
√𝟕𝟕
𝟑𝟑

.

T.2  Exercises

Find the exact values of the six trigonometric functions for the indicated angle 𝜃𝜃. Rationalize denominators 
when applicable. 

1. 2. 3. 

4. 5. 6. 

Sketch an angle 𝜃𝜃 in standard position such that 𝜃𝜃 has the least positive measure, and the given point is on the 
terminal side of 𝜃𝜃. Then find the values of the three primary trigonometric functions for each angle. Rationalize 
denominators when applicable. 

7. (−3,4) 8. (−4,−3) 9. (5,−12) 10. (0, 3) 11. (−4,0)

12. �1,√3� 13. (3, 5) 14. (0,−8) 15. �−2√3,−2� 16. (5, 0)

17. If the terminal side of an angle 𝜃𝜃 is in quadrant III, what is the sign of each of the trigonometric function
values of 𝜃𝜃?

Suppose that the point (𝑥𝑥, 𝑦𝑦) is in the indicated quadrant. Decide whether the given ratio is positive or negative. 

18. 𝑄𝑄I, 𝑦𝑦
𝑥𝑥

19. 𝑄𝑄II, 𝑦𝑦
𝑥𝑥

20. 𝑄𝑄II, 𝑦𝑦
𝑟𝑟

21. 𝑄𝑄III, 𝑥𝑥
𝑟𝑟

22. 𝑄𝑄IV, 𝑦𝑦
𝑥𝑥

23. 𝑄𝑄III, 𝑦𝑦
𝑥𝑥

24. 𝑄𝑄IV, 𝑦𝑦
𝑟𝑟

25. 𝑄𝑄I, 𝑦𝑦
𝑟𝑟

26. 𝑄𝑄IV, 𝑥𝑥
𝑟𝑟

27. 𝑄𝑄II, 𝑥𝑥
𝑟𝑟

remember, 𝒓𝒓 is 
always positive

αx < 0
y > 0

O
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Use the definition of trigonometric functions in terms of x, y, and r to determine each value. If it is undefined, 
say so. 

28. sin 90° 29. cos 0° 30. tan 180° 31. cos 180° 32. cot 270°

33. cos 270° 34. csc 270° 35. sec 90° 36. sin 0° 37. cot 90°

Determine the values of the remaining two primary trigonometric functions of the angle satisfying the given 
conditions. Rationalize denominators when applicable. 

38. sin𝛼𝛼 = √2
4

;  𝛼𝛼 ∈ 𝑄𝑄II 39. sin𝛽𝛽 = −2
3
;  𝛽𝛽 ∈ 𝑄𝑄III 40. cos 𝜃𝜃 = 2

5
;  𝜃𝜃 ∈ 𝑄𝑄IV 
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T3 Evaluation of Trigonometric Functions

In the previous section, we defined sine, cosine, tangent, secant, cosecant, and cotangent as functions of real 
angles. In this section, we will take interest in finding values of these functions for angles 𝜃𝜃 ∈ [0°, 360°). As 
shown before, one can find exact values of trigonometric functions of an angle 𝜃𝜃 with the aid of a right triangle 
with the acute angle 𝜃𝜃 and given side lengths, or by using coordinates of a given point on the terminal side of the 
angle 𝜃𝜃 in standard position. What if such data is not given? Then, one could consider approximating trigonometric 
function values by measuring sides of a right triangle with the desired angle 𝜃𝜃 and calculating corresponding 
ratios. However, this could easily prove to be a cumbersome process, with inaccurate results. Luckily, we can rely 
on calculators, which are programmed to return approximated values of the three primary trigonometric functions 
for any angle.  

Attention:  In this section, any calculator instruction will refer to scientific calculators. 

Evaluating Trigonometric Functions Using a Calculator 

Find each function value up to four decimal places.  

a. sin 39°12′ 10" b. tan 102.6°

a. Before entering the expression into the calculator, we need to check if the calculator

is in degree mode by pressing the key until DEG appears at the top of the

screen. Now we can enter sin 39°12′10′′ by pressing

Thus sin 39°12′10′′ ≈ 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 when rounded to four decimal places. 

b. When evaluating trigonometric functions of angles in decimal degrees, it is not

necessary to write the degree (°) sign when in degree mode. We simply key in

to obtain tan 102.6° ≈ −𝟒𝟒.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒  when rounded to four decimal places. 

Special Angles 

It has already been discussed how to find the exact values of trigonometric functions of quadrantal angles using 
the definitions in terms of 𝑥𝑥, 𝑦𝑦, and 𝑟𝑟. See Section T2, Example 3b, and Table 2.1. 

Are there any other angles for which the trigonometric functions can be evaluated exactly? 
Yes, we can find the exact values of trigonometric functions of any angle that can be 
modelled by a right triangle with known sides. For example, angles such as 30°, 45°, or 60° 
can be modeled by half of a square or half of an equilateral triangle. In each triangle, the 
relations between the lengths of sides are easy to establish.

In the case of half a square (see Figure 3.1), we obtain a right triangle with two acute angles 
of  𝟒𝟒𝟒𝟒°,  and two equal sides of certain length 𝒂𝒂.  

Solution 

When evaluating functions 
of angles in degrees, the 

calculator must be set to the 
degree mode. 

 

Figure 3.1 

DRG 

sin 𝑫𝑫°𝑴𝑴′𝑺𝑺 = 39 12 10 𝑫𝑫°𝑴𝑴′𝑺𝑺 

tan = 102.6 
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Hence, by The Pythagorean Theorem, the diagonal 𝑑𝑑 = √𝑎𝑎2 + 𝑎𝑎2 = √2𝑎𝑎2 = 𝒂𝒂√𝟐𝟐 . 

Summary:  The sides of any 𝟒𝟒𝟒𝟒° − 𝟒𝟒𝟒𝟒° − 𝟗𝟗𝟗𝟗° triangle are in the relation 𝒂𝒂 − 𝒂𝒂 − 𝒂𝒂√𝟐𝟐. 

By dividing an equilateral triangle (see Figure 3.1) along its height, we obtain a right 
triangle with acute angles of 𝟑𝟑𝟑𝟑° and 𝟔𝟔𝟔𝟔°. If the length of the side of the original triangle 
is denoted by 𝟐𝟐𝟐𝟐, then the length of half a side is 𝒂𝒂, and the length of the height can be 
calculated by applying The Pythagorean Theorem, ℎ = �(2𝑎𝑎)2 − 𝑎𝑎2 = √3𝑎𝑎2 = 𝒂𝒂√𝟑𝟑 .  

Summary:  The sides of any 𝟑𝟑𝟑𝟑° − 𝟔𝟔𝟔𝟔° − 𝟗𝟗𝟗𝟗° triangle are in the relation 𝒂𝒂 − 𝟐𝟐𝟐𝟐 − 𝒂𝒂√𝟑𝟑. 

Since the trigonometric ratios do not depend on the size of a triangle, for simplicity, we can 
assume that 𝑎𝑎 = 1 and work with the following special triangles: 

Special angles such as 𝟑𝟑𝟑𝟑°,𝟒𝟒𝟒𝟒°, and 𝟔𝟔𝟔𝟔° are frequently seen in applications. We will often 
refer to the exact values of trigonometric functions of these angles. Special triangles give 
us a tool for finding those values. 

Advice: Make sure that you can recreate the special triangles by taking half of a 
square or half of an equilateral triangle anytime you wish to recall the relations between 
their sides. 

Finding Exact Values of Trigonometric Functions of Special Angles 

Find the exact value of each expression.  

a. cos 60° b. tan 30° c. sin 45° d. tan 45°

a. Refer to the 30° − 60° − 90° triangle and follow the SOH-CAH-TOA definition of
sine:

cos 60° =
𝑎𝑎𝑎𝑎𝑎𝑎.
ℎ𝑦𝑦𝑦𝑦.

=
1
2

b. Refer to the same triangle as above:

tan 30° =
𝑜𝑜𝑜𝑜𝑜𝑜.
𝑎𝑎𝑎𝑎𝑎𝑎.

=
1
√3

=
√3
3

Figure 3.2 

Solution 

Figure 3.3 

half of an equilateral 
triangle, known as a 

Golden Triangle
 

half of a square
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c. Refer to the 45° − 45° − 90°  triangle:

sin 45° =
𝑜𝑜𝑜𝑜𝑜𝑜.
ℎ𝑦𝑦𝑦𝑦.

=
1
√2

=
√2
2

d. Refer to the 45° − 45° − 90°  triangle:

tan 45° =
𝑜𝑜𝑜𝑜𝑜𝑜.
𝑎𝑎𝑎𝑎𝑎𝑎.

=
1
1

= 1 

The exact values of trigonometric functions of special angles are summarized in the table below. 

Table 3.1 Function Values of Special Angles 

Observations: • Notice that sin 30° = cos 60°,  sin 60° = cos 30°, and  sin 45° = cos 45°.  Is there any
general rule to explain this fact? Lets look at a right triangle with acute angles 𝜶𝜶 and 𝜷𝜷
(see Figure 3.4). Since the sum of angles in any triangle is 180° and ∠𝐶𝐶 = 90°, then
𝜶𝜶 + 𝜷𝜷 = 90°, therefore they are complementary angles. From the definition, we have
sin𝜶𝜶 = 𝒂𝒂

𝒃𝒃
= cos𝜷𝜷. Since angle 𝜶𝜶 was chosen arbitrarily, this rule applies to any pair of

acute complementary angles. It happens that this rule actually applies to all
complementary angles. So we have the following claim:

The cofunctions (like sine and cosine, secant and cosecant, or tangent and cotangent) 
of complementary angles are equal. 

Using the Cofunction Relationship 

Rewrite cos 75° in terms of the cofunction of the complementary angle. 

Since the complement of 75° is 90° − 75° = 15°, then cos 75° = 𝐬𝐬𝐬𝐬𝐬𝐬𝟏𝟏𝟏𝟏°. 

𝜽𝜽 
function  

𝟑𝟑𝟑𝟑° 𝟒𝟒𝟒𝟒° 𝟔𝟔𝟔𝟔° 

𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽 1
2

√2
2

√3
2

𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 √3
2

√2
2

1
2

𝐭𝐭𝐭𝐭𝐭𝐭 𝜽𝜽 √3
3

1 √3

𝐬𝐬𝐬𝐬𝐬𝐬 𝜶𝜶 = 𝐜𝐜𝐜𝐜𝐜𝐜 (𝟗𝟗𝟗𝟗°− 𝜶𝜶) 
𝐬𝐬𝐬𝐬𝐬𝐬 𝜶𝜶 = 𝐜𝐜𝐜𝐜𝐜𝐜 (𝟗𝟗𝟗𝟗°− 𝜶𝜶) 
𝐭𝐭𝐭𝐭𝐭𝐭 𝜶𝜶 = 𝐜𝐜𝐜𝐜𝐜𝐜 (𝟗𝟗𝟗𝟗°− 𝜶𝜶) 

Figure 3.4 

Solution 
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Reference Angles 

Can we determine exact values of trigonometric functions of nonquadrantal angles that are larger than 90°? 

Assume that point (𝑎𝑎, 𝑏𝑏) lies on the terminal side of acute angle 𝛼𝛼. By Definition 2.2, 
the values of trigonometric functions of angles with terminals containing points 
(−𝑎𝑎, 𝑏𝑏), (−𝑎𝑎,−𝑏𝑏), and (𝑎𝑎,−𝑏𝑏) are the same as the values of corresponding functions 
of the angle 𝛼𝛼, except for their signs.  

Therefore, to find the value of a trigonometric function of any angle 𝜃𝜃, it is enough to 
evaluate this function at the corresponding acute angle 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, called the reference angle, 
and apply the sign appropriate to the quadrant of the terminal side of 𝜃𝜃. 

Definition 3.1 Let 𝜃𝜃 be an angle in standard position. The acute angle 𝜽𝜽𝒓𝒓𝒓𝒓𝒓𝒓 formed by the terminal side 
of the angle 𝜃𝜃 and the 𝑥𝑥-axis is called the reference angle. 

Attention: Think of a reference angle as the smallest rotation of the terminal arm required to line it 
up with the 𝒙𝒙-axis. 

Finding the Reference Angle 

Find the reference angle for each of the given angles. 

a. 40° b. 135° c. 210° d. 300°

a. Since 𝟒𝟒𝟒𝟒° ∈ 𝑄𝑄I, this is already the reference angle.

b. Since 135° ∈ 𝑄𝑄II, the reference angle equals 180° − 135° = 𝟒𝟒𝟒𝟒°.

c. Since 205° ∈ 𝑄𝑄III, the reference angle equals 205° − 180° = 𝟐𝟐𝟐𝟐°.

d. Since 300° ∈ 𝑄𝑄IV, the reference angle equals 360° − 300° = 𝟔𝟔𝟔𝟔°.

Solution 

Figure 3.5 
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CAST Rule 

Using the 𝑥𝑥,𝑦𝑦, 𝑟𝑟 definition of trigonometric functions, we can determine and summarize the signs of those 
functions in each of the quadrants. 
Since sin𝜃𝜃 = 𝒚𝒚

𝒓𝒓
 and 𝑟𝑟 is positive, then the sign of the sine ratio is the same as the sign of the 𝑦𝑦-

value. This means that the values of sine are positive only in quadrants where 𝑦𝑦 is positive, thus in 
𝑄𝑄I and 𝑄𝑄II. 
Since cos 𝜃𝜃 = 𝒙𝒙

𝒓𝒓
 and 𝑟𝑟 is positive, then the sign of the cosine ratio is the same as the sign of the 𝑥𝑥-

value. This means that the values of cosine are positive only in quadrants where 𝑥𝑥 is positive, thus 
in 𝑄𝑄I and 𝑄𝑄IV. 
Since tan 𝜃𝜃 = 𝒚𝒚

𝒙𝒙
, then the values of the tangent ratio are positive only in quadrants where both 𝑥𝑥 

and 𝑦𝑦 have the same signs, thus in 𝑄𝑄I and 𝑄𝑄III. 

Table 3.2 Signs of Trigonometric Functions in Quadrants 

Since we will be making frequent decisions about signs of trigonometric function values, 
it is convenient to have an acronym helping us memorizing these signs in different 
quadrants. The first letters of the names of functions that are positive in particular 
quadrants, starting from the fourth quadrant and going counterclockwise, spells CAST, 
which is very helpful when working with trigonometric functions of any angles. 

Identifying the Quadrant of an Angle 

Identify the quadrant or quadrants for each angle satisfying the given conditions. 

a. sin𝜃𝜃 > 0;  tan 𝜃𝜃 < 0 b. cos 𝜃𝜃 > 0;  sin𝜃𝜃 < 0

a. Using CAST, we have sin𝜃𝜃 > 0 in 𝑄𝑄I(All) and 𝑄𝑄II(Sine) and
tan𝜃𝜃 < 0 in 𝑄𝑄II and 𝑄𝑄IV. Therefore both conditions are met only in
quadrant II.

b. cos 𝜃𝜃 > 0 in 𝑄𝑄I(All) and 𝑄𝑄IV(Cosine) and sin𝜃𝜃 < 0 in 𝑄𝑄III and 𝑄𝑄IV.
Therefore both conditions are met only in quadrant IV.

Identifying Signs of Trigonometric Functions of Any Angle 

Using the CAST rule, identify the sign of each function value.  

𝜽𝜽 ∈ 
function  

𝑸𝑸𝐈𝐈 𝑸𝑸𝐈𝐈𝐈𝐈 𝑸𝑸𝐈𝐈𝐈𝐈𝐈𝐈 𝑸𝑸𝐈𝐈𝐈𝐈

𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽 + + − − 
𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 + − − + 
𝐭𝐭𝐭𝐭𝐭𝐭 𝜽𝜽 + − + − 

Figure 3.6 

Solution 𝑄𝑄II 

𝑄𝑄IV 

𝒚𝒚 > 𝟎𝟎 

𝒙𝒙 > 𝟎𝟎 

𝒙𝒙 > 𝟎𝟎 
𝒚𝒚 > 𝟎𝟎 

𝒙𝒙 < 𝟎𝟎 
𝒚𝒚 < 𝟎𝟎 
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a. cos 150° b. tan 225°
a. Since 150° ∈ 𝑄𝑄II and cosine is negative in 𝑄𝑄II, then cos 150° is negative.

b. Since 225° ∈ 𝑄𝑄III and tangent is positive in 𝑄𝑄III, then tan 225° is positive.

To find the exact value of a trigonometric function 𝑻𝑻 of an angle 𝜽𝜽 with the reference angle 
𝜽𝜽𝒓𝒓𝒓𝒓𝒓𝒓 being a special angle, we follow the rule: 

, 

where the final sign is determined according to the quadrant of angle 𝜃𝜃 and the CAST rule. 

Finding Exact Function Values Using Reference Angles 

Find the exact values of the following expressions.  

a. sin 240° b. cos 315°

a. The reference angle of 240° is 240° − 180° = 60°. Since 240° ∈ 𝑄𝑄III and sine in the
third quadrant is negative, we have

sin 240° = − sin 60° = −
√𝟑𝟑
𝟐𝟐

b. The reference angle of 315° is 360° − 315° = 45°. Since 315° ∈ 𝑄𝑄IV and cosine in
the fourth quadrant is positive, we have

cos 315° = cos 45° =
1
√2

=
√𝟐𝟐
𝟐𝟐

Finding Special Angles in Various Quadrants when Given Trigonometric Function Value 

Now that it has been shown how to find exact values of trigonometric functions of angles that have a reference 
angle of one of the special angles (𝟑𝟑𝟑𝟑°,𝟒𝟒𝟒𝟒°, or 𝟔𝟔𝟔𝟔°), we can work at reversing this process. Familiarity with values 
of trigonometric functions of the special angles, in combination with the ideas of reference angles and quadrantal 
sign analysis, should help us in solving equations of the type 𝑻𝑻(𝜽𝜽) = 𝒆𝒆𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗, where 𝑻𝑻 represents any 
trigonometric function.  

Finding Angles with a Given Exact Function Value, in Various Quadrants 

Find all angles 𝜃𝜃 satisfying the following conditions.  

a. sin 𝜃𝜃 = √2
2

 ;  𝜃𝜃 ∈ [0°, 180°)  b. cos 𝜃𝜃 = − 1
2
 ; 𝜃𝜃 ∈ [0°, 360°) 

a. Refering to the half of a square triangle, we recognize that  √2
2

= 1
√2

 represents the 
ratio of sine of 45°. Thus, the reference angle 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 45°. Moreover, 
we are searching for an angle 𝜃𝜃 from the interval [0°, 180°) and we 
know that sin 𝜃𝜃 > 0. Therefore, 𝜃𝜃 must lie in the first or second 
quadrant and have the reference angle of 45°. Each quadrant gives 
us one solution, as shown in the figure on the right. 

Solution 

Solution 

Solution 



Section T3 |   237 

Evaluation of Trigonometric Functions 

If 𝜃𝜃 is in the first quadrant, then 𝜃𝜃 = 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 45°. 
If 𝜃𝜃 is in the second quadrant, then 𝜃𝜃 = 180° − 45° = 135°. 

So the solution set of the above problem is {𝟒𝟒𝟒𝟒°,𝟏𝟏𝟏𝟏𝟏𝟏°}. 

b. Refering to the half of an equlateral triangle, we recognize that  1
2

 represents the ratio 
of cosine of 60°. Thus, the reference angle 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 60°. We are searching for an angle 
𝜃𝜃 from the interval [0°, 360°) and we know that cos 𝜃𝜃 < 0. Therefore, 𝜃𝜃 must lie in 
the second or third quadrant and have the reference angle of 60°.  

If 𝜃𝜃 is in the second quadrant, then 𝜃𝜃 = 180° − 60° = 120°. 
If 𝜃𝜃 is in the third quadrant, then 𝜃𝜃 = 180° + 60° = 240°. 

So the solution set of the above problem is {𝟏𝟏𝟏𝟏𝟏𝟏°,𝟐𝟐𝟐𝟐𝟐𝟐°}.  

Finding Other Trigonometric Function Values 

Finding Other Function Values Using a Known Value, Quadrant Analysis, and the 
𝒙𝒙,𝒚𝒚,𝒓𝒓 Definition of Trigonometric Ratios 

Find values of the remaining primary trigonometric functions of the angle satisfying the 
given conditions. 

a. sin𝜃𝜃 = − 7
13

; 𝜃𝜃 ∈ 𝑄𝑄IV b. tan𝜃𝜃 = 15
8

; 𝜃𝜃 ∈ 𝑄𝑄III 

a. We know that sin 𝜃𝜃 = − 7
13

= 𝑦𝑦
𝑟𝑟
. Hence, the terminal side of angle 𝜃𝜃 ∈ 𝑄𝑄IV contains a 

point 𝑃𝑃(𝑥𝑥,𝑦𝑦) satisfying the condition  𝑦𝑦
𝑟𝑟

= − 7
13

. Since 𝑟𝑟 must be positive, we will 
assign 𝑦𝑦 = −7 and 𝑟𝑟 = 13, to model the situation. Using the Pythagorean equation 
and the fact that the 𝑥𝑥-coordinate of any point in the fourth quadrant is positive, we 
determine the corresponding 𝑥𝑥-value to be 

𝑥𝑥 = �𝑟𝑟2 − 𝑦𝑦2 = �132 − (−7)2 = √169 − 49 = √120 = 2√30. 

Now, we are ready to state the remaining function values of angle 𝜃𝜃: 

cos 𝜃𝜃 =
𝑥𝑥
𝑟𝑟

=
𝟐𝟐√𝟑𝟑𝟑𝟑
𝟏𝟏𝟏𝟏

and 

tan 𝜃𝜃 =
𝑦𝑦
𝑥𝑥

=
−7

2√30
∙
√30
√30

=
−𝟕𝟕√𝟑𝟑𝟑𝟑
𝟔𝟔𝟔𝟔

 . 

b. We know that tan 𝜃𝜃 = 15
8

= 𝑦𝑦
𝑥𝑥
. Similarly as above, we would like to determine 𝑥𝑥,𝑦𝑦,

and 𝑟𝑟 values that would model the situation. Since angle 𝜃𝜃 ∈ 𝑄𝑄III, both 𝑥𝑥 and 𝑦𝑦 values 
must be negative. So we assign 𝑦𝑦 = −15 and 𝑥𝑥 = −8.  Therefore,  

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 = �(−15)2 + (−8)2 = √225 + 64 = √289 = 17 

Solution 

here we can disregard the sign of the 
given value as we are interested in 

the reference angle only 
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Now, we are ready to state the remaining function values of angle 𝜃𝜃: 

sin𝜃𝜃 =
𝑦𝑦
𝑟𝑟

=
−𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏

and 

cos 𝜃𝜃 =
𝑥𝑥
𝑟𝑟

=
−𝟖𝟖
𝟏𝟏𝟏𝟏

.

T.3  Exercises

Use a calculator to approximate each value to four decimal places. 

1. sin 36°52′ 05′′ 2. tan 57.125° 3. cos 204°25′

Give the exact function value, without the aid of a calculator. Rationalize denominators when applicable. 

4. cos 30° 5. sin 45° 6. tan 60° 7. sin 60°

8. tan 30° 9. cos 60° 10. sin 30° 11. tan 45°

Give the equivalent expression using the cofunction relationship. 

12. cos 50° 13. sin 22.5° 14. sin 10°

For each angle, find the reference angle. 

15. 98° 16. 212° 17. 13° 18. 297° 19. 186°

Identify the quadrant or quadrants for each angle satisfying the given conditions. 

20. cos𝛼𝛼 > 0 21. sin𝛽𝛽 < 0 22. tan𝛾𝛾 > 0

23. sin𝜃𝜃 > 0; cos 𝜃𝜃 < 0 24. cos𝛼𝛼 < 0; tan𝛼𝛼 > 0 25. sin𝛼𝛼 < 0; tan𝛼𝛼 < 0

Identify the sign of each function value by quadrantal analysis. 

26. cos 74° 27. sin 245° 28. tan 129° 29. sin 183°

30. tan 298° 31. cos 317° 32. sin 285° 33. tan 215°

Using reference angles, quadrantal analysis, and special triangles, find the exact values of the expressions. 
Rationalize denominators when applicable. 

34. cos 225° 35. sin 120° 36. tan 150° 37. sin 150°

38. tan 240° 39. cos 210° 40. sin 330° 41. tan 225°
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Find all values of 𝜃𝜃 ∈ [0°, 360°) satisfying the given condition. 

42. sin 𝜃𝜃 = −1
2

43. cos 𝜃𝜃 = 1
2

44. tan𝜃𝜃 = −1 45. sin𝜃𝜃 = √3
2

46. tan𝜃𝜃 = √3 47. cos 𝜃𝜃 = −√2
2

48. sin𝜃𝜃 = 0 49. tan𝜃𝜃 = −√3
3

Find values of the remaining primary trigonometric functions of the angle satisfying the given conditions. 

50. sin𝜃𝜃 = √5
7

;  𝜃𝜃 ∈ 𝑄𝑄II  51. cos𝛼𝛼 = 3
5
;  𝛼𝛼 ∈ 𝑄𝑄IV 52. tan𝛽𝛽 = √3;  𝛽𝛽 ∈ 𝑄𝑄III 
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T4 Applications of Right Angle Trigonometry 

Solving Right Triangles 

Geometry of right triangles has many applications in the real world. It is often used by carpenters, surveyors, 
engineers, navigators, scientists, astronomers, etc. Since many application problems can be modelled by a right 
triangle and trigonometric ratios allow us to find different parts of a right triangle, it is essential that we learn how 
to apply trigonometry to solve such triangles first.  

Definition 4.1 To solve a triangle means to find the measures of all the unknown sides and angles of the 
triangle. 

Solving a Right Triangle Given an Angle and a Side 

Given the information, solve triangle 𝐴𝐴𝐴𝐴𝐴𝐴, assuming that ∠𝐶𝐶 = 90°. 

a. b. ∠𝐵𝐵 = 11.4°, 𝑏𝑏 = 6 𝑐𝑐𝑐𝑐  

a. To find the length 𝑎𝑎, we want to relate it to the given length of 12 and the angle of 35°.
Since 𝑎𝑎 is opposite angle 35° and 12 is the length of the hypotenuse, we can use the
ratio of sine:

𝑎𝑎
12

= sin 35° 

Then, after multiplying by 12, we have 

𝑎𝑎 = 12 sin 35° ≃ 𝟔𝟔.𝟗𝟗 

Since we already have the value of 𝑎𝑎, the length 𝑏𝑏 can be determined in two ways: by 
applying the Pythagorean Theorem, or by using the cosine ratio. For better accuracy, 
we will apply the cosine ratio: 

𝑏𝑏
12

= cos 35° 
which gives 

𝑏𝑏 = 12 cos 35° ≃ 𝟗𝟗.𝟖𝟖 

Finally, since the two acute angles are complementary, ∠𝐵𝐵 = 90° − 35° = 𝟓𝟓𝟓𝟓°.  

We have found the three missing measurements, 𝑎𝑎≃ 6. 9, 𝑏𝑏≃ 9. 8, and ∠𝐵𝐵 = 55°, so 
the triangle is solved. 

b. To visualize the situation, let’s sketch a right triangle with ∠𝐵𝐵 = 11.4° and  𝑏𝑏 = 6 (see
Figure 1). To find side 𝑎𝑎, we we would like to set up an equation that relates 6, 𝑎𝑎, and
11.4°. Since 𝑏𝑏 = 6 is the opposite and 𝑎𝑎 is the adjacent with respect to ∠𝐵𝐵 = 11.4°,
we will use the ratio of tangent:

Solution 

round lengths to 
one decimal place

 
Attention: To be 
more accurate, if 
possible, use the 
given data rather 

than the previously 
calculated ones, 

which are most likely 
already rounded. 

𝟏𝟏𝟏𝟏.𝟒𝟒° 

Figure 1 
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tan 11.4° =
6
𝑎𝑎

To solve for 𝑎𝑎, we may want to multiply both sides of the equation by 𝑎𝑎 and divide by 
tan 11.4°. Observe that this will cause 𝑎𝑎 and tan 11.4° to interchange (swap) their 
positions.  So, we obtain 

𝑎𝑎 =
6

tan 11.4°
≃ 𝟐𝟐𝟐𝟐.𝟖𝟖 

To find side 𝑐𝑐, we will set up an equation that relates 6, 𝑐𝑐, and 11.4°. Since 𝑏𝑏 = 6 is 
the opposite to ∠𝐵𝐵 = 11.4° and 𝑐𝑐 is the hypothenuse, the ratio of sine applies. So, we 
have 

sin 11.4° =
6
𝑐𝑐

Similarly as before, to solve for 𝑐𝑐, we can simply interchange the position of sin 11.4° 
and 𝑐𝑐 to obtain 

𝑐𝑐 =
6

sin 11.4°
≃ 𝟑𝟑𝟑𝟑.𝟒𝟒 

Finally, ∠𝐴𝐴 = 90° − 11.4° = 𝟕𝟕𝟕𝟕.𝟔𝟔°, which completes the solution. 

In summary, ∠𝐴𝐴 = 78.6°, 𝑎𝑎 ≃ 29.8, and 𝑐𝑐 ≃ 30. 4. 

Observation: Notice that after approximated length 𝑎𝑎 was found, we could have 
used the Pythagorean Theoreom to find length 𝑐𝑐. However, this could decrease the 
accuracy of the result. For this reason, it is advised that we use the given rather than 
approximated data, if possible. 

Finding an Angle Given a Trigonometric Function Value 

So far we have been evaluating trigonometric functions for a given angle. Now, what if we wish to reverse this 
process and try to recover an angle that corresponds to a given trigonometric function value? 

Finding an Angle Given a Trigonometric Function Value 

Find an angle 𝜃𝜃, satisfying the given equation. Round to one decimal place, if needed. 

a. sin𝜃𝜃 = 0.7508 b. cos 𝜃𝜃 = −0.5

a. Since 0.7508 is not a special value, we will not be able to find 𝜃𝜃 by relating the
equation to a special triangle as we did in Section T3, Example 8. This time, we will
need to rely on a calculator. To find 𝜃𝜃, we want to “undo” the sine. The function that
can “undo” the sine is called arcsine, or inverse sine, and it is often abbreviated by
𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏. By applying the sin−1 to both sides of the equation

Solution 
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sin𝜃𝜃 = 0.7508, 
we have 

sin−1(sin𝜃𝜃) = sin−1(0.7508) 

Since sin−1 “undoes” the sine function, we obtain 

𝜃𝜃 = sin−1 0.7508 ≃ 𝟒𝟒𝟒𝟒.𝟕𝟕° 

On most calculators, to find this value, we follow the sequence of keys: 

          or            or           ,          , 0.7508,               or  

b. In this example, the absolute value of cosine is a special value. This means that 𝜃𝜃 can
be found by referring to the golden triangle properties and the CAST rule of signs as
in Section T3, Example 8b. The other way of finding 𝜃𝜃 is via a calculator

𝜃𝜃 = cos−1(−0.5) = 𝟏𝟏𝟏𝟏𝟏𝟏° 

Note: Calculators are programed to return 
𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏 and  𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 as angles from the interval [−𝟗𝟗𝟗𝟗°,𝟗𝟗𝟗𝟗°] and 
𝐜𝐜𝐜𝐜𝐜𝐜−𝟏𝟏  as angles from the interval [𝟎𝟎°,𝟏𝟏𝟏𝟏𝟏𝟏°]. 

That implies that when looking for an obtuse angle, it is easier to work with 𝐜𝐜𝐜𝐜𝐜𝐜−𝟏𝟏, if 
possible, as our calculator will return the actual angle. When using 𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏 or  𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏, we 
might need to search for a corresponding angle in the second quadrant on our own. 

More on Solving Right Triangles 

Solving a Right Triangle Given Two Sides 

Solve the triangle. 

Since ⊿𝐴𝐴𝐴𝐴𝐴𝐴 is a right triangle, to find the length 𝑥𝑥, we can use the Pythagorean Theorem. 

𝑥𝑥2 + 92 = 152 
so 

𝒙𝒙 = √225 − 81 = √144 = 𝟏𝟏𝟏𝟏 

To find the angle 𝛼𝛼, we can relate either 𝑥𝑥 = 12, 9, and 𝛼𝛼, or 12, 15, and 𝛼𝛼. We will use 
the second triple and the ratio of sine. Thus, we have 

sin𝛼𝛼 =
12
15

, 

therefore 

𝜶𝜶 = sin−1
12
15

≃ 𝟓𝟓𝟓𝟓.𝟏𝟏° 

Solution 

round angles to 
one decimal place

 

2nd SIN ENTER INV = Shift 
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Finally, 𝜷𝜷 = 90° − 𝛼𝛼 ≃ 90° − 53.1° = 𝟑𝟑𝟑𝟑.𝟗𝟗°. 

In summary, 𝛼𝛼 = 53.1°, 𝛽𝛽 ≃ 36.9°, and 𝑥𝑥 = 12. 

Using Relationships Between Sides of Special Triangles 

Find the exact value of each unknown in the figure.  

First, consider the blue right triangle. Since one of the acute angles is 60°, the other must 
be 30°. Thus the blue triangle represents half of an equilateral triangle with the side b and 
the height of 3 units. Using the relation ℎ = 𝑎𝑎√3 between the height ℎ and half a side 𝑎𝑎 of 
an equilateral triangle, we obtain 

𝒂𝒂√3 = 3, 

which gives us 𝒂𝒂 = 3
√3
∙ √3
√3

= 3√3
3

= √𝟑𝟑. Consequently, 𝒃𝒃 = 2𝒂𝒂 = 𝟐𝟐√𝟑𝟑. 

Now, considering the yellow right triangle, we observe that both acute angles are equal to 
45° and therefore the triangle represents half of a square with the side 𝒔𝒔 = 𝒃𝒃 = 𝟐𝟐√𝟑𝟑. 

Finally, using the relation between the diagonal and a side of a square, we have 

𝒅𝒅 = 𝒔𝒔√2 = 2√3√2 = 𝟐𝟐√𝟔𝟔. 

Angles of Elevation or Depression in Applications 

The method of solving right triangles is widely adopted in solving many applied problems. One of the critical 
steps in the solution process is sketching a triangle that models the situation, and labeling the parts of this triangle 
correctly.  
In trigonometry, many applied problems refer to angles of elevation or depression, or include some navigation 
terminology, such as direction or bearing.  

Definition 4.2 Angle of elevation (or inclination) is the acute angle 
formed by a horizontal line and the line of sight to an 
object above the horizontal line. 

Angle of depression (or declination) is the acute angle 
formed by a horizontal line and the line of sight to an 
object below the horizontal line. 

angle of 
depression 

angle of 
elevation 

Solution 
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Applying Angles of Elevation or Depression 

Find the height of the tree in the picture given next to Definition 4.2, assuming that the 
observer sees the top of the tree at an angle of elevation of 15°, the base of the tree at an 
angle of depression of 40°, and the distance from the base of the tree to the observer’s eyes 
is 10.2 meters. 

First, let’s draw a diagram to model the situation, label the vertices, and place the given 
data. Then, observe that the height of the tree 𝐵𝐵𝐵𝐵 can be obtained as the sum of distances 
𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶. 
𝐵𝐵𝐵𝐵 can be found from ⊿𝐴𝐴𝐴𝐴𝐴𝐴, by using the ratio of sine of 40°. 
From the equation 

𝐵𝐵𝐵𝐵
10.2

= sin 40°, 

we have 
𝐵𝐵𝐵𝐵 = 10.2 sin 40° ≃ 𝟔𝟔.𝟓𝟓𝟓𝟓 

To calculate the length 𝐷𝐷𝐷𝐷, we would need to have another piece of information about 
⊿𝐴𝐴𝐴𝐴𝐴𝐴 first. Notice that the side 𝐴𝐴𝐴𝐴 is common for the two triangles. This means that we 
can find it from ⊿𝐴𝐴𝐴𝐴𝐴𝐴, and use it for ⊿𝐴𝐴𝐴𝐴𝐴𝐴 in subsequent calculations. 
From the equation 

𝐶𝐶𝐶𝐶
10.2

= cos 40°, 

we have 
𝐶𝐶𝐶𝐶 = 10.2 cos 40° ≃ 7.8137 

Now, employing tangent of 15° in ⊿𝐴𝐴𝐴𝐴𝐴𝐴, we have  

𝐶𝐶𝐶𝐶
7.8137

= tan 15° 

which gives us 
𝐶𝐶𝐶𝐶 = 7.8137 ∙ tan 15° ≃ 𝟐𝟐.𝟎𝟎𝟎𝟎 

Hence the height of the tree is 𝐵𝐵𝐵𝐵 ≃ 6.56 + 2.09 = 8.65 ≃ 𝟖𝟖.𝟕𝟕 meters. 

Using Two Angles of Elevation at a Given Distance to Determine the Height 

When Ricky and Sonia were sailing their boat on a 
river, they observed the tip of a bridge tower at a 
25° elevation angle. After sailing 200 meters closer 
to the tower, they noticed that the tip of the tower 
was visible at 40° elevation angle. Approximate the 
height of the tower to the nearest meter. 

Solution 

C 

B

D

A
40° 

15° 

10.2 

since we use this result 
in further calculations, 

four decimals of 
accuracy is advised 

40° 
200 m 

25° 
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To model the situation, let us draw the diagram and adopt the notation as in Figure 2. We 
look for height 𝒉𝒉, which is a part of the two right triangles ⊿𝐴𝐴𝐴𝐴𝐴𝐴 and ⊿𝐷𝐷𝐷𝐷𝐷𝐷. 

Since trigonometric ratios involve two sides of a triangle, and we already have 
length 𝐴𝐴𝐴𝐴, a part of the side 𝐶𝐶𝐶𝐶, it is reasonable to introduce another unknown, 
call it 𝒙𝒙, to represent the remaining part 𝐶𝐶𝐶𝐶. Then, applying the ratio of tangent 
to each of the right triangles, we produce the following system of equations:  

�

ℎ
𝑥𝑥

= tan 40°

ℎ
𝑥𝑥 + 200

= tan 25°

To solve the above system, we first solve each equation for ℎ 

� ℎ ≃ 0.8391𝑥𝑥
ℎ ≃ 0.4663(𝑥𝑥 + 200) , 

and then by equating the right sides, we obtain 

0.8391𝑥𝑥 = 0.4663(𝑥𝑥 + 200) 

0.8391𝑥𝑥 − 0.4663𝑥𝑥 = 93.26 

0.3728𝑥𝑥 = 93.26 

𝑥𝑥 =
93.26

0.3728
≃ 250.16 

Therefore, 𝒉𝒉 ≃ 0.8391 ⋅ 250.16 ≃ 𝟐𝟐𝟐𝟐𝟐𝟐 𝒎𝒎.   

The height of the tower is approximately 210 meters. 

Direction or Bearing in Applications 

A large group of applied problems in trigonometry refer to direction or bearing to describe the location of an 
object, usually a plane or a ship. The idea comes from following the behaviour of a compass. The magnetic needle 
in a compass points North. Therefore, the location of an object is described as a clockwise deviation from the 
SOUTH-NORTH line.  

There are two main ways of describing directions: 

- One way is by stating the angle 𝜃𝜃 that starts from the North and opens clockwise until the
line of sight of an object. For example, we can say that the point 𝑩𝑩 is seen in the direction
of 108° from the point 𝑨𝑨, as in Figure 2a.

- Another way is by stating the acute angle formed by the South-North line and the line of
sight. Such an angle starts either from the North (N) or the South (S) and opens either towards
the East (E) or the West (W). For instance, the position of the point 𝑩𝑩 in Figure 2b would
be described as being at a bearing of 𝐒𝐒72°𝐄𝐄 (read: South 72° towards the East) from the
point 𝑨𝑨.

This, for example, means that: 

Figure 2a 

Figure 2b 

Solution 

Figure 2 

substitute 
to the top 
equation
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the direction of 195° can be seen as the bearing 𝐒𝐒15°𝐖𝐖 
and the direction of 290° means the same as 𝐍𝐍70°𝐖𝐖.  

Using Direction in Applications Involving Navigation 

An airplane flying at a speed of 400 mi/hr flies from a point 𝐴𝐴 in the direction of 153° 
for one hour and then flies in the direction of 63° for another hour. 

a. How long will it take the plane to get back to the point 𝐴𝐴?

b. What is the direction that the plane needs to fly in order to get back to the point 𝐴𝐴?

a. First, let’s draw a diagram modeling the situation. Assume the notation as in Figure 3.
Since the plane flies at 153° and the South-North lines 𝐴𝐴𝐴𝐴�⃖���⃗  and 𝐵𝐵𝐵𝐵�⃖���⃗  are parallel, by the
property of interior angles, we have ∠𝐴𝐴𝐴𝐴𝐴𝐴 = 180° − 153° = 27°. This in turn gives
us ∠𝐴𝐴𝐴𝐴𝐴𝐴 = ∠𝐴𝐴𝐴𝐴𝐴𝐴 + ∠𝐸𝐸𝐸𝐸𝐸𝐸 = 27° + 63° = 90°. So the ⊿𝐴𝐴𝐴𝐴𝐴𝐴 is right angled with
∠𝐵𝐵 = 90° and the two legs of length 𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 = 400 𝑚𝑚𝑚𝑚. This means that the ⊿𝐴𝐴𝐵𝐵𝐶𝐶 
is in fact a special triangle of the type 45° − 45° − 90°.

Therefore 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴√2 = 400√2 ≃ 565.7 𝑚𝑚𝑚𝑚. 

Now, solving the well-known motion formula 𝑅𝑅 ∙ 𝑇𝑇 = 𝐷𝐷 for the time 𝑇𝑇, we have

𝑇𝑇 =
𝐷𝐷
𝑅𝑅
≃

400√2
400

= √2 ≃ 1.4142 ℎ𝑟𝑟 ≃ 𝟏𝟏 𝒉𝒉𝒉𝒉 𝟐𝟐𝟐𝟐 𝒎𝒎𝒎𝒎𝒎𝒎 

Thus, it will take the plane approximately 1 hour and 25 minutes to return to the 
starting point 𝐴𝐴. 

b. To direct the plane back to the starting point, we need to find angle 𝜃𝜃, marked in blue,
rotating clockwise from the North to the ray 𝐶𝐶𝐶𝐶�����⃗ . By the property of alternating angles,
we know that ∠𝐹𝐹𝐹𝐹𝐹𝐹 = 63°. We also know that ∠𝐵𝐵𝐵𝐵𝐵𝐵 = 45°, as ∠𝐴𝐴𝐴𝐴𝐴𝐴 is the “half of
a square” special triangle. Therefore,

𝜃𝜃 = 180° + 63° + 45° = 𝟐𝟐𝟐𝟐𝟐𝟐°. 

Thus, to get back to the point 𝐴𝐴, the plane should fly in the direction of 288°. 
Notice that this direction can also be stated as 𝐍𝐍72°𝐖𝐖.  

T.4  Exercises

Using a calculator, find an angle 𝜃𝜃 satisfying the given equation. Leave your answer in decimal degrees rounded 
to the nearest tenth of a degree if needed. 

1. sin𝜃𝜃 = 0.7906 2. cos 𝜃𝜃 = 0.7906 3. tan𝜃𝜃 = 2.5302

4. cos 𝜃𝜃 = −0.75 5. tan𝜃𝜃 = √3 6. sin𝜃𝜃 = 3
4

Solution 

Figure 3 
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Given the data, solve each triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with ∠𝐶𝐶 = 90°. 

7.      8.  9. 

10. ∠𝐴𝐴 = 42°, 𝑏𝑏 = 17 11. 𝑎𝑎 = 9.45, 𝑐𝑐 = 9.81 12. ∠𝐵𝐵 = 63°12′, 𝑏𝑏 = 19.1

Find the exact value of each unknown in the figure. 

13.  14. 

15. 16. 

17. A circle of radius 8 centimeters is inscribed in a regular hexagon. Find the exact perimeter of the hexagon.

18. A regular pentagon is inscribed in a circle with 10 meters diameter. To the nearest centimeter, find the
perimeter of the pentagon.

19. A 25 meters long supporting rope connects the top of a 23 meters high mast of a sailboat with the deck of the
boat. To the nearest degree, find the angle between the rope and the mast.

20. A 16 meters long guy wire is attached to the top of a utility pole. The angle between the guy wire and the
ground is 54°. To the nearest tenth of a meter, how tall is the pole?

21. From the top of a 52 m high cliff, the angle of depression to a boat is 4°15′. To the nearest meter, how far is
the boat from the base of the cliff?

22. A spotlight reflector mounted to a ceiling of a 3.5 meters high hall is directed onto a piece of art displayed
1.5 meters above the floor.  To the nearest degree, what angle of depression should be used to direct the light
onto the piece of art if the reflector is 3.8 meters away from it?

23. To determine the height of the Eiffel Tower, a 1.8 meters tall tourist standing 50 meters from the center of
the base of the tower measures the angle of elevation to the top of the tower to be 81°. Using this information,
determine the height of the Eiffel Tower to the nearest meter.
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24. To the nearest meter, find the height of an isosceles triangle with 25.2 meters long base and 35°40′ angle by
the base.

25. A plane flies 700 kilometers at a bearing of 𝐍𝐍56°𝐄𝐄 and then 850 kilometers at a bearing of 𝐒𝐒34°𝐄𝐄. How far
and in what direction is the plane from the starting point? Round the answers to the nearest kilometer and the
nearest degree.

26. A plane flies at 420 km/h for 30 minutes in the direction of 142°. Then, it changes its direction to 232° and
flies for 45 minutes. To the nearest kilometer, how far is the plane at that time from the starting point? To the
nearest degree, in what direction should the plane fly to come back to the starting point?

27. Standing 200 meters from the base of the CN Tower, a tourist sees the pinnacle of the
tower at 70.1° elevation angle. The tower has a built-in restaurant as in the accompanying
picture. The tourist can see this restaurant at 65.9° elevation angle. To the nearest meter,
how tall is the CN Tower, including its pinnacle? How high above the ground is the
restaurant?

28. A hot air balloon rises vertically at a constant rate, as
shown in the accompanying figure. A hundred fifty meters
away from the balloon’s lift-off place, a spectator notices
the balloon at 36° angle of elevation. A minute later, the
spectator records that the angle of elevation of the balloon
is 62°. To the nearest meter per second, determine the rate
of the balloon.

29. Two people observe an eagle nest on a tall tree in a
park.  One person sees the nest at the angle of elevation of 60° while the 
other at the angle of elevation of 75°. If the people are 25 meters apart from 
each other and the tree is between them, determine the altitude at which the 
nest is situated. Round your answer to the nearest tenth of a meter.  

30. A person approaching a tall building records the angle
of elevation to the top of the building to be 32°. Fifteen
meters closer to the building, this angle becomes 40°. To
the nearest meter, how tall is the building? What would the
angle of elevation be in another 15 meters?

31. Suppose that the length of the shadow
of The Palace of Culture and Science in
Warsaw increases by 15.5 meters when the
angle of elevation of the sun decreases from
48° to 46°. Based on this information,
determine the height of the palace. Round
your answer to the nearest meter.

200 
 

70.1° 

65.9° 

15 m 15 m 

𝟐𝟐𝟐𝟐° 𝟑𝟑𝟑𝟑° 
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32. A police officer observes a road from 150 meters
distance as in the accompanying diagram. A car moving
on the road covers the distance between two chosen by
the officer points, A and B, in 1.5 seconds. If the angles
between the lines of sight to points 𝐴𝐴 and 𝐵𝐵 and the line
perpendicular to the observed road are respectively
34.1° and 20.3°, what was the speed of the car? State
your answer in kilometers per hour rounded up to one
decimal.

Imagery @2016 IMTCAN, Map data @2016 Google 
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T5 The Laws of Sines and Cosines and Their Applications 

The concepts of solving triangles developed in Section T4 can be extended to all triangles. A triangle that is not 
right-angled is called an oblique triangle. Many application problems involve solving oblique triangles, yet we 
can not use the SOH-CAH-TOA rules when solving those triangles since SOH-CAH-TOA definitions apply only 
to right triangles! So, we need to search for other rules that will allow us to solve oblique triangles. 

The Sine Law 

Observe that all triangles can be classified with respect to the size of their angles as acute (with all acute angles), 
right (with one right angle), or obtuse (with one obtuse angle). Therefore, oblique triangles are either acute or 
obtuse.  

Let’s consider both cases of an oblique ⊿𝐴𝐴𝐴𝐴𝐴𝐴, as in Figure 1. In each case, let’s drop the 
height ℎ from vertex 𝐵𝐵 onto the line 𝐴𝐴𝐴𝐴�⃖���⃗ , meeting this line at point 𝐷𝐷. This way, we obtain 
two more right triangles, ⊿𝐴𝐴𝐴𝐴𝐴𝐴 with hypotenuse 𝑐𝑐, and ⊿𝐵𝐵𝐵𝐵𝐵𝐵 with hypotenuse 𝑎𝑎. 
Applying the ratio of sine to both of these triangles, we have: 

sin∠𝐴𝐴 = ℎ
𝑐𝑐
,  so  ℎ = 𝑐𝑐 sin∠𝐴𝐴 

and sin∠𝐶𝐶 = ℎ
𝑎𝑎
,  so  ℎ = 𝑎𝑎 sin∠𝐶𝐶. 

Thus, 
𝑎𝑎 sin∠𝐶𝐶 =  𝑐𝑐 sin∠𝐴𝐴, 

  and we obtain 
𝒂𝒂

𝐬𝐬𝐬𝐬𝐬𝐬∠𝑨𝑨
=

𝒄𝒄
𝐬𝐬𝐬𝐬𝐬𝐬∠𝑪𝑪

. 

 Similarly, by dropping heights from the other two vertices, we can show that 

𝒂𝒂
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑨𝑨

=
𝒃𝒃

𝐬𝐬𝐬𝐬𝐬𝐬∠𝑩𝑩
 and 

𝒃𝒃
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩

=
𝒄𝒄

𝐬𝐬𝐬𝐬𝐬𝐬∠𝑪𝑪
. 

This result is known as the Law of Sines. 

The Sine Law In any triangle 𝐴𝐴𝐴𝐴𝐴𝐴, the lengths of the sides are proportional to the sines of the opposite 
angles. This fact can be expressed in any of the following, equivalent forms: 

𝒂𝒂
𝒃𝒃

=
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑨𝑨
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩

, 
𝒃𝒃
𝒄𝒄

=
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑪𝑪

, 
𝒄𝒄
𝒂𝒂

=
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑪𝑪
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑨𝑨

or 
𝒂𝒂

𝐬𝐬𝐬𝐬𝐬𝐬∠𝑨𝑨
=

𝒃𝒃
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩

=
𝒄𝒄

𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑪𝑪
or 

𝐬𝐬𝐬𝐬𝐬𝐬∠𝑨𝑨
𝒂𝒂

=
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩
𝒃𝒃

=
𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑪𝑪
𝒄𝒄

Figure 1 
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Observation:  As with any other proportion, to solve for one variable, we need to know the three remaining values. 
Notice that when using the Sine Law proportions, the three known values must include one pair of 
opposite data: a side and its opposite angle. 

Solving Oblique Triangles with the Aid of The Sine Law 

Given the information, solve each triangle 𝐴𝐴𝐴𝐴𝐴𝐴. 

a. ∠𝐴𝐴 = 42°, ∠𝐵𝐵 = 34°, 𝑏𝑏 = 15 b. ∠𝐴𝐴 = 35°, 𝑎𝑎 = 12, 𝑏𝑏 = 9

a. First, we will sketch a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 that models the given data. Since the sum of angles
in any triangle equals 180°, we have

∠𝑪𝑪 = 180° − 42° − 34° = 𝟏𝟏𝟏𝟏𝟏𝟏°. 

Then, to find length 𝑎𝑎, we will use the pair (𝑎𝑎,∠𝐴𝐴) of opposite data, side 𝑎𝑎 and ∠𝐴𝐴, 
and the given pair (𝑏𝑏,∠𝐵𝐵). From the Sine Law proportion, we have  

𝑎𝑎
sin 42°

=
15

sin 34°
, 

which gives 

𝒂𝒂 =
15 ∙ sin 42°

sin 34°
≃ 𝟏𝟏𝟏𝟏.𝟗𝟗 

To find length 𝑐𝑐, we will use the pair (𝑐𝑐,∠𝐶𝐶) and the given pair of opposite data 
(𝑏𝑏,∠𝐵𝐵). From the Sine Law proportion, we have  

𝑐𝑐
sin 104°

=
15

sin 34°
, 

which gives 

𝒄𝒄 =
15 ∙ sin 104°

sin 34°
≃ 𝟐𝟐𝟐𝟐 

So the triangle is solved. 

b. As before, we will start by sketching a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 that models the given data. Using
the pair (9,∠𝐵𝐵) and the given pair of opposite data (12, 35°), we can set up a
proportion

sin∠𝐵𝐵
9

=
sin 35° 

12
. 

Then, solving it for sin∠𝐵𝐵, we have 

sin∠𝐵𝐵 =
9 ∙ sin 35° 

12
≃ 0.4302, 

which, after applying the inverse sine function, gives us 

∠𝑩𝑩 ≃ 𝟐𝟐𝟐𝟐.𝟓𝟓° 

Now, we are ready to find  ∠𝑪𝑪 = 180° − 35° − 25.5° = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓°, 

 

 
 

 

Solution 

for easier calculations, 
keep the unknown in 

the numerator 
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and finally, from the proportion 

𝑐𝑐
sin 119.5°

=
12 

sin 35°
 , 

we have 

𝒄𝒄 =
12 ∙ sin 119.5° 

sin 35°
≃ 𝟏𝟏𝟏𝟏.𝟐𝟐 

Thus, the triangle is solved. 

Ambiguous Case 

Observe that the size of one angle and the length of two sides does 
not always determine a unique triangle. For example, there are two 
different triangles that can be constructed with ∠𝐴𝐴 = 35°, 𝑎𝑎 = 9,
𝑏𝑏 = 12. 
Such a situation is called an ambiguous case. It occurs when the 
opposite side to the given angle is shorter than the other given side 
but long enough to complete the construction of an oblique 
triangle, as illustrated in Figure 2.  
In application problems, if the given information does not 
determine a unique triangle, both possibilities should be 
considered in order for the solution to be complete.  
On the other hand, not every set of data allows for the construction 
of a triangle. For example (see Figure 3), if ∠𝐴𝐴 = 35°, 𝑎𝑎 = 5,
𝑏𝑏 = 12, the side 𝑎𝑎 is too short to complete a triangle, or if  𝑎𝑎 = 2,
𝑏𝑏 = 3, 𝑐𝑐 = 6, the sum of lengths of 𝑎𝑎 and 𝑏𝑏 is smaller than the 
length of 𝑐𝑐, which makes impossible to construct a triangle fitting 
the data.  
Note that in any triangle, the sum of lengths of any two sides is 
always bigger than the length of the third side.  

Using the Sine Law in an Ambiguous Case 

Solve triangle 𝐴𝐴𝐴𝐴𝐴𝐴, knowing that ∠𝐴𝐴 = 30°, 𝑎𝑎 = 10, 𝑏𝑏 = 19. 

When sketching a diagram, we notice that there are two possible triangles, ⊿𝐴𝐴𝐴𝐴𝐴𝐴 and 
⊿𝐴𝐴𝐴𝐴’𝐶𝐶, complying with the given information. ⊿𝐴𝐴𝐴𝐴𝐴𝐴 can be solved in the same way as 
the triangle in Example 1b. In particular, one can calculate that in ⊿𝐴𝐴𝐴𝐴𝐴𝐴, we have ∠𝑩𝑩 ≃
𝟕𝟕𝟕𝟕.𝟖𝟖°, ∠𝑪𝑪 ≃ 𝟕𝟕𝟕𝟕.𝟐𝟐°, and 𝒄𝒄 ≃ 𝟏𝟏𝟏𝟏.𝟔𝟔.  

Let’s see how to solve ⊿𝐴𝐴𝐴𝐴’𝐶𝐶 then. As before, to find ∠𝐵𝐵’, we will use the proportion 

sin∠𝐵𝐵′
19

=
sin 30° 

10
, 

Solution 

Figure 2 

35° 

35° 

Figure 3 
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which gives us sin∠𝐵𝐵′ = 19∙sin30°
10

= 0.95. However, when applying the inverse sine 
function to the number 0.95, a calculator returns the approximate angle of 71.8°. Yet, we 
know that angle 𝐵𝐵′ is obtuse. So, we should look for an angle in the second quadrant, with 
the reference angle of 71.8°. Therefore, ∠𝑩𝑩′ = 180° − 71.8° = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐°. 

Now, ∠𝑪𝑪 = 180° − 30° − 108.2° = 𝟒𝟒𝟒𝟒.𝟖𝟖°  

and finally, from the proportion 

𝑐𝑐
sin 41.8°

=
10 

sin 30°
 , 

we have 

𝒄𝒄 =
10 ∙ sin 41.8° 

sin 30°
≃ 𝟏𝟏𝟏𝟏.𝟑𝟑 

Thus, ⊿𝐴𝐴𝐴𝐴’𝐶𝐶 is solved. 

Solving an Application Problem Using the Sine Law 

Refer to the accompanying diagram. Round all your answers to the nearest tenth of a meter. 

From a distance of 1000 meters from the west base 
of a mountain, the top of the mountain is visible at a 
32° angle of elevation. At the west base,  the average 
slope of the mountain is estimated to be 46°.  

a. Determine the distance WT from the west base
to the top of the mountain.

b. What is the distance ET from the east base to
the top of the mountain, if the average slope of the mountain there is 61°?

c. Find the height HT of the mountain.

a. To find distance WT, consider ⊿𝐴𝐴𝐴𝐴𝐴𝐴. Observe that one can easily find the remaining
angles of this triangle, as shown below:

∠𝐴𝐴𝑊𝑊𝑊𝑊 = 180° − 46° = 134° 

and 
∠𝐴𝐴𝑇𝑇𝑇𝑇 = 180° − 32° − 134° = 14°    

Therefore, applying the Law of Sines, we have 

𝑊𝑊𝑊𝑊
sin 32°

=
1000

sin 14°
, 

which gives 

𝑾𝑾𝑾𝑾 =
1000 sin 32°

sin 14°
≃ 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐.𝟓𝟓 𝒎𝒎. 

Solution 

 supplementary angles 

 sum of angles in a ⊿ 
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b. To find distance ET, we can apply the Law of Sines
to ⊿𝑊𝑊𝑊𝑊𝑊𝑊 using the pair (2190.5, 61°). From the
equation

𝐸𝐸𝐸𝐸
sin 46°

=
2190.5
sin 61°

 , 

we have 

𝑬𝑬𝑬𝑬 =
2190.5 sin 46°

sin 61°
≃ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔 𝒎𝒎. 

c. To find the height 𝐻𝐻𝐻𝐻 of the mountain, we can use the right triangle 𝑊𝑊𝑊𝑊𝑊𝑊. By the
definition of sine, we have

𝐻𝐻𝐻𝐻
2190.5

= sin 46°, 

so  𝑯𝑯𝑯𝑯 = 2190.5 sin 46° ≃ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕 𝒎𝒎. 

The Cosine Law 

The above examples show how the Sine Law can help in solving oblique triangles when one pair of opposite 
data is given. However, the Sine Law is not enough to solve a triangle if the given information is 

- the length of the three sides (but no angles), or
- the length of two sides and the enclosed angle.

Both of the above cases can be solved with the use of another property of a triangle, called the Cosine Law.

The Cosine Law In any triangle 𝐴𝐴𝐴𝐴𝐴𝐴, the square of a side of a triangle is equal to the sum of the 
squares of the other two sides, minus twice their product times the cosine of the 
opposite angle. 

𝒂𝒂𝟐𝟐 = 𝒃𝒃𝟐𝟐 + 𝒄𝒄𝟐𝟐 − 𝟐𝟐𝒃𝒃𝒄𝒄 𝐜𝐜𝐜𝐜𝐜𝐜 ∠𝑨𝑨 

𝒃𝒃𝟐𝟐 = 𝒂𝒂𝟐𝟐 + 𝒄𝒄𝟐𝟐 − 𝟐𝟐𝒂𝒂𝒄𝒄 𝐜𝐜𝐜𝐜𝐜𝐜 ∠𝑩𝑩 

𝒄𝒄𝟐𝟐 = 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 − 𝟐𝟐𝒂𝒂𝒃𝒃 𝐜𝐜𝐜𝐜𝐜𝐜 ∠𝑪𝑪  

 Observation:  If the angle of interest in any of the above equations is right, since cos 90° = 0, the equation 
becomes Pythagorean. So the Cosine Law can be seen as an extension of the Pythagorean Theorem. 

To derive this law, let’s place an oblique triangle 𝐴𝐴𝐴𝐴𝐴𝐴 in the system of 
coordinates so that vertex 𝐶𝐶 is at the origin, side 𝐴𝐴𝐴𝐴 lies along the positive 
𝑥𝑥-axis, and vertex 𝐵𝐵 is above the 𝑥𝑥-axis, as in Figure 3. 

Thus 𝐶𝐶 = (0,0) and 𝐴𝐴 = (𝑏𝑏, 0). Suppose point 𝐵𝐵 has coordinates (𝑥𝑥,𝑦𝑦). 
By Definition 2.2, we have 

cos∠𝐶𝐶 =
𝑥𝑥
𝑎𝑎

 , 

which gives us 

Figure 3 

note the opposite 
side and angle 

E H 1000 
 

32° 46°
61° 
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𝑥𝑥 = 𝑎𝑎 cos∠𝐶𝐶 . 

Let 𝐷𝐷 = (𝑥𝑥, 0) be the perpendicular projection of the vertex 𝐵𝐵 onto the x-
axis. After applying the Pythagorean equation to the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴, 
with ∠𝐷𝐷 = 90°, we obtain 

𝒄𝒄𝟐𝟐 = 𝑦𝑦2 + (𝑏𝑏 − 𝑥𝑥)2 
= 𝑦𝑦2 + 𝑏𝑏2 − 2𝑏𝑏𝑏𝑏 + 𝑥𝑥2 
= 𝑎𝑎2 + 𝑏𝑏2 − 2𝑏𝑏𝑏𝑏 
= 𝑎𝑎2 + 𝑏𝑏2 − 2𝑏𝑏(𝑎𝑎 cos∠𝐶𝐶) 
= 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜∠𝑪𝑪 

Similarly, by placing the vertices 𝐴𝐴 or 𝐵𝐵 at the origin, one can develop the remaining two forms of the Cosine 
Law. 

Solving Oblique Triangles Given Two Sides and the Enclosed Angle 

Solve triangle 𝐴𝐴𝐴𝐴𝐴𝐴, given that ∠𝐵𝐵 = 95°, 𝑎𝑎 = 13, and 𝑐𝑐 = 7. 

First, we will sketch an oblique triangle 𝐴𝐴𝐴𝐴𝐴𝐴 to model the situation. Since there 
is no pair of opposite data given, we cannot use the Law of Sines. However, 
applying the Law of Cosines with respect to side 𝑏𝑏 and ∠𝐵𝐵 allows for finding 
the length 𝑏𝑏. From 

𝑏𝑏2 = 𝑎𝑎2 + 𝑐𝑐2 − 2𝑎𝑎𝑎𝑎 cos∠𝐵𝐵 = 132 + 72 − 2 ∙ 13 ∙ 7 cos 95° ≃ 233.86, 

we have 𝒃𝒃 ≃ 𝟏𝟏𝟏𝟏.𝟑𝟑 . 

Now, since we already have the pair of opposite data (15.3, 95°), we can apply the Law of 
Sines to find, for example, ∠𝐶𝐶. From the proportion 

sin∠𝐶𝐶
7

=
sin 95° 

15.3
, 

we have 

sin∠𝐶𝐶 =
7 ∙ sin 95° 

15.3
≃ 0.4558, 

thus ∠𝑪𝑪 = sin−1 0.4558 ≃ 𝟐𝟐𝟐𝟐.𝟏𝟏°.  
Finally, ∠𝑨𝑨 = 180° − 95° − 27.1° = 𝟓𝟓𝟓𝟓.𝟗𝟗° and the triangle is solved. 

When applying the Law of Cosines in the above example, there was no other choice but to start with the pair of 
opposite data (𝑏𝑏,∠𝐵𝐵).  However, in the case of three given sides, one could apply the Law of Cosines 
corresponding to any pair of opposite data. Is there any preference as to which pair to start with? Actually, yes. 
Observe that after using the Law of Cosines, we often use the Law of Sines to complete the solution since the 
calculations are usually easier to perform this way. Unfortunately, when solving a sine proportion for an obtuse 
angle, one would need to change the angle obtained from a calculator to its supplementary one. This is because 
calculators are programmed to return angles from the first quadrant when applying sin−1 to positive ratios. If we 
look for an obtuse angle, we need to employ the fact that sin𝛼𝛼 = sin(180° − 𝛼𝛼) and take the supplement of the 

Solution 

here we apply the Pythagorean 
equation to Δ𝐵𝐵𝐵𝐵𝐵𝐵 and replace 

 𝑦𝑦2 + 𝑥𝑥2 with 𝑎𝑎2 

 watch the order of 
operations here! 



257   | Section T5 

Trigonometry 

calculator’s answer. To avoid this ambiguity, it is recommended to apply the Cosine Law to the pair of the 
longest side and largest angle first. This will guarantee that the Law of Sines will be used to find only acute 
angles and thus it will not cause ambiguity. 

Recommendations:   - apply the Cosine Law only when it is absolutely necessary (SAS or SSS) 
- apply the Cosine Law to find the largest angle first, if applicable

Solving Oblique Triangles Given Three Sides 

Solve triangle 𝐴𝐴𝐴𝐴𝐴𝐴, given that  𝑎𝑎 = 15 𝑚𝑚, 𝑏𝑏 = 25 𝑚𝑚, and 𝑐𝑐 = 28 𝑚𝑚. 

First, we will sketch a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 to model the situation. As before, there is 
no pair of opposite data given, so we cannot use the Law of Sines. So, we will 
apply the Law of Cosines with respect to the pair (28,∠𝐶𝐶), as the side 𝑐𝑐 = 28 
is the longest. To solve the equation 

282 = 152 + 252 − 2 ∙ 15 ∙ 25 cos∠𝐶𝐶 

for ∠𝐶𝐶, we will first solve it for cos∠𝐶𝐶, and have 

cos∠𝐶𝐶 =
282 − 152 − 252

−2 ∙ 15 ∙ 25
=

−66
−750

= 0.088, 

which, after applying cos−1, gives ∠𝑪𝑪 ≃ 𝟖𝟖𝟖𝟖°. 

Since now we have the pair of opposite data (28, 85°), we can apply the Law of Sines to 
find, for example, ∠𝐴𝐴. From the proportion 

sin∠𝐴𝐴
15

=
sin 85° 

28
, 

we have 

sin∠𝐴𝐴 =
15 ∙ sin 85° 

28
≃ 0.5337, 

thus ∠𝑨𝑨 = sin−1 0.5337 ≃ 𝟑𝟑𝟑𝟑.𝟑𝟑°.  
Finally, ∠𝑩𝑩 = 180° − 85° − 32.3° = 𝟔𝟔𝟔𝟔.𝟕𝟕° and the triangle is solved. 

Solving an Application Problem Using the Cosine Law 

Two planes leave an airport at the same time and fly in different directions. Plane 𝐴𝐴 flies in 
the direction of 155° at 390 km/h and plane 𝐵𝐵 flies in the direction of 260° at 415 km/h. 
To the nearest kilometer, how far apart are the planes after two hours? 

As usual, we start the solution by sketching a diagram appropriate to the situation. Assume 
the notation as in Figure 3. 

Solution 

  watch the order of 
operations when 
solving for cosine 

Solution 
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Since plane 𝐴𝐴 flies at 390 km/h for two hours, we can find the distance 

𝑏𝑏 = 2 ∙ 390 = 780 𝑘𝑘𝑘𝑘. 

Similarly, since plane 𝐵𝐵 flies at 415 km/h for two hours, we have 

𝑎𝑎 = 2 ∙ 415 = 830 𝑘𝑘𝑘𝑘. 

The measure of the enclosed angle 𝐴𝐴𝐴𝐴𝐴𝐴 can be obtained as a difference between the given 
directions. So we have 

∠𝐴𝐴𝐴𝐴𝐴𝐴 = 260° − 155° = 105°. 

Now, we are ready to apply the Law of Cosines in reference to the pair (𝑝𝑝, 105°). From the 
equation 

𝑝𝑝2 = 8302 + 7802 − 2 ∙ 830 ∙ 780 cos 105° ≃ 1632418.9, 

we have  𝑝𝑝 ≃ √1632418.9 ≃ 1278 𝑘𝑘𝑘𝑘.  

So we know that after two hours, the two planes are about 1278 kilometers apart. 

Area of a Triangle 

The method used to derive the Law of Sines can also be used to derive a handy formula for finding the area of a 
triangle, without knowing its height.  

Let 𝐴𝐴𝐴𝐴𝐴𝐴 be a triangle with height ℎ dropped from the vertex 𝐵𝐵 onto the line 𝐴𝐴𝐴𝐴�⃖���⃗ ,  
meeting 𝐴𝐴𝐴𝐴�⃖���⃗  at the point 𝐷𝐷, as shown in Figure 4. Using the right ⊿𝐴𝐴𝐴𝐴𝐴𝐴, we have 

sin∠𝐴𝐴 =
ℎ
𝑐𝑐

, 

and equivalently ℎ = 𝑐𝑐 sin∠𝐴𝐴, which after substituting into the well known formula 
for area of a triangle [𝑨𝑨𝑨𝑨𝑨𝑨] = 𝟏𝟏

𝟐𝟐
𝒃𝒃𝒃𝒃, gives us 

[𝑨𝑨𝑨𝑨𝑨𝑨] =
𝟏𝟏
𝟐𝟐
𝒃𝒃𝒃𝒃 𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑨𝑨 

The Sine Formula for Area of a Triangle 

The area [𝑨𝑨𝑨𝑨𝑨𝑨] of a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 can be calculated by taking half of a product of the 
lengths of two sides and the sine of the enclosed angle. We have 

[𝑨𝑨𝑨𝑨𝑨𝑨] =
𝟏𝟏
𝟐𝟐
𝒃𝒃𝒄𝒄 𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑨𝑨,      [𝑨𝑨𝑨𝑨𝑨𝑨] =

𝟏𝟏
𝟐𝟐
𝒂𝒂𝒄𝒄 𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑩𝑩,     or     [𝑨𝑨𝑨𝑨𝑨𝑨] =

𝟏𝟏
𝟐𝟐
𝒂𝒂𝒃𝒃 𝐬𝐬𝐬𝐬𝐬𝐬 ∠𝑪𝑪.  

155° 

260° 

Figure 4 

Figure 3 
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Finding Area of a Triangle Given Two Sides and the Enclosed Angle 

In a search for her lost earring, Irene used a flashlight to 
illuminate part of the floor under her bed. If the flashlight emitted 
the light at 40° angle and the length of the outside rays of light 
was 5 ft and 7 ft as indicated in the accompanying diagram, how 
many square feet of the floor were illuminated?  

We start with sketching an appropriate diagram. Assume the notation as in Figure 5. 

From the sine formula for area of a triangle, we have  

[𝑃𝑃𝑃𝑃𝑃𝑃] =
1
2
∙ 5 ∙ 7 sin 40° ≃ 11.2 ft2.

The area of the illuminated part of the floor under the bed was about 11 square feet. 

Heron’s Formula 

The Law of Cosines can be used to derive a formula for the area of a triangle when only the lengths of the three 
sides are known. This formula is known as Heron’s formula (as mentioned in Section RD1), named after the Greek 
mathematician Heron of Alexandria. 

Heron’s Formula for Area of a Triangle 

The area [𝑨𝑨𝑨𝑨𝑨𝑨] of a triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with sides 𝑎𝑎,𝑏𝑏, 𝑐𝑐, and semiperimeter 𝒔𝒔 = 𝒂𝒂+𝒃𝒃+𝒄𝒄
𝟐𝟐

 can 
be calculated using the formula 

[𝑨𝑨𝑨𝑨𝑨𝑨] = �𝒔𝒔(𝒔𝒔 − 𝒂𝒂)(𝒔𝒔 − 𝒃𝒃)(𝒔𝒔 − 𝒄𝒄) 

Finding Area of a Triangle Given Three Sides 

The city of Abbotsford plans to convert a triangular lot into public parking. In square 
meters, what would the area of the parking be if the three sides of the lot are 45 m, 57 m, 
and 60 m long?  

To find the area of the triangular lot with given sides, we would like to use Heron’s 
Formula. For this reason, we first calculate the semiperimeter 

𝑠𝑠 =
45 + 57 + 60

2
= 81. 

Then, the area equals 

�81(81 − 45)(81 − 57)(81 − 60) = √1469664 ≃ 1212.3 𝑚𝑚2. 

Thus, the area of the parking lot would be approximately 1212 square meters. 

Solution 

Figure 5 

Solution 

40° 7 ft 

5 ft 
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T.5  Exercises

Use the Law of Sines to solve each triangle. 

1.      2.  3. 

4. 5. 6. 

7. ∠𝐴𝐴 = 30°, ∠𝐵𝐵 = 30°, 𝑎𝑎 = 10 8. ∠𝐴𝐴 = 150°, ∠𝐶𝐶 = 20°, 𝑎𝑎 = 200

9. ∠𝐶𝐶 = 145°, 𝑏𝑏 = 4, 𝑐𝑐 = 14 10. ∠𝐴𝐴 = 110°15′ , 𝑎𝑎 = 48, 𝑏𝑏 = 16

Use the Law of Cosines to solve each triangle. 

11.      12.  13. 

14. 15. 16. 

17. ∠𝐶𝐶 = 60°, 𝑎𝑎 = 3, 𝑏𝑏 = 10 18. ∠𝐵𝐵 = 112°, 𝑎𝑎 = 23, 𝑐𝑐 = 31

19. 𝑎𝑎 = 2, 𝑏𝑏 = 3, 𝑐𝑐 = 4 20. 𝑎𝑎 = 34, 𝑏𝑏 = 12, 𝑐𝑐 = 17.5
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21. In a triangle 𝐴𝐴𝐴𝐴𝐴𝐴, ∠𝐴𝐴 is twice as large as ∠𝐵𝐵. Does this
mean that side 𝑎𝑎 is twice as long as side 𝑏𝑏?

Use the appropriate law to solve each application problem. 

22. To approximate the distance across the Colorado River
Canyon at the Horseshoe Bend, a hiker designates three
points, 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶, as in the accompanying figure. Then, he
records the following measurements: 𝐴𝐴𝐴𝐴 = 380 meters,
∠𝐶𝐶𝐶𝐶𝐶𝐶 = 36° and ∠𝐴𝐴𝐴𝐴𝐴𝐴 = 104°. How far is from 𝐵𝐵 to 𝐶𝐶? 

23. To find the width of a river, Peter designates three spots: 𝐴𝐴 and 𝐵𝐵 
along one side of the river 250 meters apart from each other, and 𝐶𝐶, on the
opposite side of the river (see the accompanying figure). Then, he finds that
∠𝐴𝐴 = 28°30′, and ∠𝐵𝐵 = 82°40′. To the nearest meter, what is the width of
the river?

24. The captain of a ship sailing south spotted a castle tower at the distance of approximately 8 kilometers and
the bearing of 𝑺𝑺47.5°𝑬𝑬. In half an hour, the bearing of the tower was 𝑵𝑵35.7°𝑬𝑬. What was the speed of the
ship in km/h?

25. The captain of a ship sailing south saw a lighthouse at the bearing of 𝑵𝑵52.5°𝑾𝑾. In 4 kilometers, the bearing
of the lighthouse was 𝑵𝑵35.8°𝑬𝑬. To the nearest tenth of a kilometer, how far was the ship from the lighthouse
at each location?

26. Sam and Dan started sailing their boats at the same time and from the same spot.
Sam followed the bearing of N12°W while Dan directed his boat at N5°E. After 3
hours, Sam was exactly west of Dan.  If both sailors were 4 kilometers away from
each other at that time, determine the distance sailed by Sam. Round your answer
to the nearest meter.

27. A pole is anchored to the ground by two metal cables, as shown in the
accompanying figure. The angles of inclination of the two cables are 51° and 60°
respectively. Approximately how long is the top cable if the bottom one is attached
to the pole 1.6 meters lower than the top one? Round your answer to the nearest
tenth of a meter.

28. Two forest rangers were observing the forest from different lookout towers.
At a certain moment, they spotted a group of lost hikers.  The ranger on tower 𝐴𝐴
saw the hikers at the direction of 46.7° and ranger on tower 𝐵𝐵 saw the hikers at
the direction of 315.8°. If tower 𝐴𝐴 was 3.25 kilometers west of tower 𝐵𝐵, how far
were the hikers from tower 𝐴𝐴? Round your answer to the nearest hundredth of a
kilometer.

29. A hot-air balloon rises above a hill that inclines at 26°, as indicated in the
accompanying diagram. Two spectators positioned on the hill at points 𝐴𝐴 and 𝐵𝐵 
(refer to the diagram) observe the movement of the balloon. They notice that at a
particular moment, the angle of elevation of the balloon from point 𝐴𝐴 is 64° and
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from point 𝐵𝐵 is 73°. If the spectators are 75 meters from each other, how far is the balloon from each of 
them? Round your answers to the nearest meter. 

30. To the nearest centimeter, how long is the chord subtending a central angle of 25° in a circle of radius 30 cm?

31. An airplane takes off from city 𝐴𝐴 and flies in the direction of 32°15′ to city 𝐵𝐵, which is 500 km from 𝐴𝐴. After
an hour of layover, the plane is heading in the direction of 137°25′ to reach city 𝐶𝐶, which is 740 km from 𝐴𝐴.
How far and in what direction should the plane fly to go back to city 𝐴𝐴?

32. Find the area of a triangular hang-glider with two 7.5-meter sides that enclose the
angle of 142°. Round your answer to the nearest tenth of a square meter.

33. One-meter-wide solar panels were installed on a
flat surface by tilting them up at an angle 𝜃𝜃, as shown in the accompanying 
figure. If the distance between the top corner of a panel in the flat and tilted 
position is 0.45 meters, determine the measure of angle 𝜃𝜃. 

34. Three pipes with centres at points 𝐴𝐴, 𝐵𝐵, and
𝐶𝐶 are tangent to each other. A perpendicular cross-section of the arrangement is
shown in the accompanying figure. To the nearest tenth of a degree, determine the
angles of triangle 𝐴𝐴𝐴𝐴𝐴𝐴, if the radii of the pipes are 6 cm, 10 cm, and 12 cm,
respectively.

35. A 15-meters tall lighthouse is
standing on a cliff. A person observing the lighthouse from a 
boat approaching the shore notices that the angle of elevation 
to the top of the lighthouse is 41° and to the bottom is 36°. 
Disregarding the person’s height, estimate the height of the 
cliff.  

36. The top of a flag pole is visible from
the top of a 60 meters high building at 
17°25′ angle of depression. From the
bottom of this building, the tip of the flag
pole can be seen at 35°40′ angle of
elevation. To the nearest centimeter, how tall is the flag pole?

37. Find the area of a triangular parcel having two sides of lengths 51.4 m and 62.1 m, and 48.7° angle between
them.

38. A city plans to pave a triangular area with sides of length 82 meters, 78 meters, and 112 meters. A pallet of
bricks chosen for the job can cover 10 square meters of area. How many pallets should be ordered?

39. Suppose points 𝑃𝑃 and 𝑄𝑄 are located respectively at (9, 5) and (−1, 7). If point 𝑂𝑂 is
the origin of the Cartesian coordinate system, determine the angle between vectors
𝑂𝑂𝑂𝑂�����⃗  and 𝑂𝑂𝑂𝑂������⃗ . Round your answer to the nearest degree.

𝜽𝜽 

41°
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40. The building of The Pentagon in Washington D.C. is in a shape of a
regular pentagon with about 281 meters long side, as shown in the
accompanying figure. To the nearest meter, determine the radius of
the circumcircle of this pentagon (the circle that passes through all
the vertices of the polygon).

41. The locations 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 of three FM radio transmitters form a
triangle with sides 𝐴𝐴𝐴𝐴 = 75 m, 𝐵𝐵𝐵𝐵 = 85 m, and 𝐴𝐴𝐴𝐴 = 90 m. The 
transmitters at 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 have a circular range of radius 35 m, 40 m, 
and 50 m, correspondingly. Assuming that no area can receive a signal 
from more than one transmitter, determine the area of the 𝐴𝐴𝐴𝐴𝐴𝐴 triangle that does not receive any signal from 
any of the three FM radio transmitters. Round your answer to the nearest tenth of a square meter. 
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 Polynomials and Polynomial Functions - ANSWERS

P1  Exercises 

1. yes 3. no 5. 4;  1 7. 2;  √2

9. −2
5
𝑥𝑥3 + 3𝑥𝑥2 − 𝑥𝑥 + 5;  3;  −2

5
 11. 𝑥𝑥5 + 8𝑥𝑥4 + 2𝑥𝑥3 − 3𝑥𝑥;  5;  1

13. 3𝑞𝑞4 + 𝑞𝑞2 − 2𝑞𝑞 + 1;  4;  3 15. first degree binomial

17. zero degree monomial 19. seventh degree monomial

21. −8 23. −12 25. −5 27. 2𝑎𝑎 − 3

29. −21 31. 6𝑎𝑎 − 9 33. −𝑥𝑥 + 13𝑦𝑦 35. 4𝑥𝑥𝑥𝑥 + 3𝑥𝑥

37. 6𝑝𝑝3 − 3𝑝𝑝2 + 𝑝𝑝 + 2 39. 3𝑚𝑚 + 11 41. −𝑥𝑥 − 4 43. −5𝑥𝑥2 + 4𝑦𝑦2 − 11𝑧𝑧2

45. −4𝑥𝑥2 − 3𝑥𝑥 − 5 47. 5𝑟𝑟6 − 𝑟𝑟5 − 7𝑟𝑟2 + 5 49. −5𝑎𝑎4 − 6𝑎𝑎3 + 9𝑎𝑎2 − 11

51. 5𝑥𝑥2𝑦𝑦2 − 7𝑦𝑦3 + 17𝑥𝑥𝑥𝑥 53. −𝑧𝑧2 + 𝑥𝑥 + 4𝑚𝑚 55. 10𝑧𝑧2 − 16𝑧𝑧

57. a. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 8𝑥𝑥 − 8 b. (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥) = 2𝑥𝑥 − 4

59. a. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = −2𝑥𝑥2 − 3𝑥𝑥 + 1 b. (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥) = 8𝑥𝑥2 − 7𝑥𝑥 − 1

61. a. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = −6𝑥𝑥2𝑛𝑛 − 2𝑥𝑥𝑛𝑛 − 1 b. (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥) = 10𝑥𝑥2𝑛𝑛 − 4𝑥𝑥𝑛𝑛 + 7

63. (𝑃𝑃 − 𝑄𝑄)(−2) = −1 65. (𝑅𝑅 − 𝑄𝑄)(0) = −7 67. (𝑃𝑃 + 𝑄𝑄)(𝑎𝑎) = 𝑎𝑎2 + 2𝑎𝑎 + 1

69. (𝑃𝑃 + 𝑅𝑅)(2𝑘𝑘) = 4𝑘𝑘2 + 2𝑘𝑘 − 6 71. ~9.3 cm

73. a.  𝑅𝑅(𝑛𝑛) = 56𝑛𝑛 b. 𝑃𝑃(𝑛𝑛) = 24𝑛𝑛 − 1500 c. 𝑃𝑃(100) = 900;
The profit from selling 100 dresses is $900.

P2  Exercises

1. a.  no;  𝑥𝑥2 ∙ 𝑥𝑥4 = 𝑥𝑥6 b. no; −2𝑥𝑥2 is in the simplest form c. yes d. yes  e. no;  (𝑎𝑎2)3 = 𝑎𝑎6

f. no;  45 ∙ 42 = 47 g. no; 6
5

32
= 25 ∙ 33 h. no;  𝑥𝑥𝑦𝑦0 = 𝑥𝑥 i. yes

3. −8𝑦𝑦8 5. 14𝑥𝑥3𝑦𝑦8 7. −27𝑥𝑥6𝑦𝑦3 9. −5𝑥𝑥3

𝑦𝑦2
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11. 64𝑎𝑎6

𝑏𝑏2 13. −125𝑝𝑝3

𝑞𝑞9
15. 12𝑎𝑎5𝑏𝑏5 17. 16𝑦𝑦

𝑥𝑥3

19. 64𝑥𝑥18𝑦𝑦6 21. 𝑥𝑥2𝑛𝑛−1 23. 52𝑎𝑎𝑎𝑎  25. −2𝑥𝑥2

27. 𝑥𝑥𝑎𝑎
2−𝑏𝑏2

29. −16𝑥𝑥7𝑦𝑦4 31. −6𝑥𝑥2 + 10𝑥𝑥 33. −12𝑥𝑥5𝑦𝑦 + 9𝑥𝑥4𝑦𝑦2

35. 15𝑘𝑘4 − 10𝑘𝑘3 + 20𝑘𝑘2 37. 𝑥𝑥2 + 𝑥𝑥 − 30 39. 6𝑥𝑥2 + 5𝑥𝑥 − 6

41. 6𝑢𝑢4 − 8𝑢𝑢3 − 30𝑢𝑢2 43. 6𝑥𝑥3 − 7𝑥𝑥2 − 13𝑥𝑥 + 15

45. 6𝑚𝑚4 − 13𝑚𝑚2𝑛𝑛2 + 5𝑛𝑛4 47. 𝑎𝑎2 − 4𝑏𝑏2 49. 𝑎𝑎2 − 4𝑎𝑎𝑎𝑎 + 4𝑏𝑏2

51. 𝑦𝑦3 + 27 53. 2𝑥𝑥4 − 4𝑥𝑥3𝑦𝑦 − 𝑥𝑥2𝑦𝑦2 + 3𝑥𝑥𝑦𝑦3 − 2𝑦𝑦4 55. true

57. true 59. false;  (2 − 1)3 ≠ 23 − 13 61. 25𝑥𝑥2 − 16

63. 1
4
𝑥𝑥2 − 9𝑦𝑦2 65. 𝑥𝑥4 − 49𝑦𝑦6 67. 0.64𝑎𝑎2 + 0.16𝑎𝑎𝑎𝑎 + 0.04𝑏𝑏2

69. 𝑥𝑥2 − 6𝑥𝑥 + 9 71. 25𝑥𝑥2 − 60𝑥𝑥𝑥𝑥 + 36𝑦𝑦2 73. 4𝑛𝑛2 − 4
3
𝑛𝑛 + 1

9
 

75. 𝑥𝑥8𝑦𝑦4 + 6𝑥𝑥4𝑦𝑦2 + 9 77. 4𝑥𝑥4 − 12𝑥𝑥2𝑦𝑦3 + 9𝑦𝑦6

79. 8𝑎𝑎5 + 40𝑎𝑎4𝑏𝑏 + 50𝑎𝑎4𝑏𝑏2 81. 𝑥𝑥4 − 𝑥𝑥2𝑦𝑦2

83. 𝑥𝑥4 − 1 85. 𝑎𝑎4 − 2𝑎𝑎2𝑏𝑏2 + 𝑏𝑏4 87. 4𝑥𝑥2 + 12𝑥𝑥𝑥𝑥 + 9𝑦𝑦2 − 25

89. 4𝑘𝑘2 = 12𝑘𝑘 + 4ℎ𝑘𝑘 − 6ℎ + ℎ2 + 9 91. 𝑥𝑥4𝑎𝑎 − 𝑦𝑦4𝑏𝑏

93. 101 ∙ 99 = (100 + 1)(100 − 1) = 10000 − 1 = 9999

95. 505 ∙ 495 = (500 + 5)(500 − 5) = 250000 − 25 = 249975

97. 𝑥𝑥2 − 𝑥𝑥 − 12 99. (𝑓𝑓𝑓𝑓)(𝑥𝑥) = 15𝑥𝑥2 − 28𝑥𝑥 + 12

101. (𝑓𝑓𝑓𝑓)(𝑥𝑥) = −3𝑥𝑥4 + 8𝑥𝑥3 + 22𝑥𝑥2 − 45𝑥𝑥 103. (𝑃𝑃𝑃𝑃)(𝑥𝑥) = 𝑥𝑥3 − 2𝑥𝑥2 − 4𝑥𝑥 + 8

105. (𝑃𝑃𝑃𝑃)(𝑎𝑎) = 2𝑎𝑎3 − 8𝑎𝑎 107. (𝑃𝑃𝑃𝑃)(3) = 30

109. (𝑄𝑄𝑄𝑄)(𝑥𝑥) = 2𝑥𝑥2 − 4𝑥𝑥 111. (𝑄𝑄𝑄𝑄)(𝑎𝑎 + 1) = 2𝑎𝑎2 − 2

113. 𝑃𝑃(2𝑎𝑎 + 3) = 4𝑎𝑎2 + 12𝑎𝑎 + 5 115. 4𝑥𝑥3 − 40𝑥𝑥2 + 96𝑥𝑥

P3  Exercises 

1. False; When dividing powers with the same bases, we subtract exponents. So, the quotient will be a fourth-
degree polynomial.

3. 4𝑥𝑥2 − 3𝑥𝑥 + 1 5. 2𝑥𝑥𝑥𝑥 − 6 7. −3𝑎𝑎3 + 5𝑎𝑎2 − 4𝑎𝑎 9. 8− 9
𝑥𝑥

+ 3
2𝑥𝑥2
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11. 2𝑏𝑏
𝑎𝑎

+ 5
3

+ 3𝑐𝑐
𝑎𝑎

13. 𝑦𝑦 + 5 15. 𝑡𝑡 − 4   R − 21

17. 2𝑎𝑎2 − 𝑎𝑎 + 2   R 6 19. 2𝑧𝑧2 − 4𝑧𝑧 + 1   R − 10 21. 3𝑥𝑥 + 1   R − 3𝑥𝑥 − 7

23. 3𝑘𝑘2 + 4𝑘𝑘 + 1 25. 5
4
𝑡𝑡 + 1   R − 5 27. 𝑝𝑝2 + 𝑝𝑝 + 1

29. 𝑦𝑦3 − 2𝑦𝑦2 + 4𝑦𝑦 − 8   R 32 31. 𝑄𝑄(𝑥𝑥) = 2𝑥𝑥2 − 𝑥𝑥 + 6; 𝑅𝑅(𝑥𝑥) = 4

33. �𝑓𝑓
𝑔𝑔
� (𝑥𝑥) = 3𝑥𝑥 − 2;  𝐷𝐷𝑓𝑓

𝑔𝑔
= ℝ ∖ {0} 35. �𝑓𝑓

𝑔𝑔
� (𝑥𝑥) = 𝑥𝑥 − 6;   𝐷𝐷𝑓𝑓

𝑔𝑔
= ℝ ∖ {−6} 

37. �𝑓𝑓
𝑔𝑔
� (𝑥𝑥) = 𝑥𝑥 + 1;   𝐷𝐷𝑓𝑓

𝑔𝑔
= ℝ ∖ �3

2
� 39. �𝑓𝑓

𝑔𝑔
� (𝑥𝑥) = 4𝑥𝑥2 − 10𝑥𝑥 + 25;   𝐷𝐷𝑓𝑓

𝑔𝑔
= ℝ ∖ �− 5

2
� 

41. �𝑅𝑅
𝑄𝑄
� (𝑥𝑥) = 𝑥𝑥−2

2𝑥𝑥
 43. �𝑅𝑅

𝑃𝑃
� (𝑥𝑥) = 1

𝑥𝑥+2
, 𝑥𝑥 ≠ 2 45. �𝑅𝑅

𝑄𝑄
� (0) = 𝐷𝐷𝐷𝐷𝐷𝐷 

47. �𝑅𝑅
𝑃𝑃
� (−2) = 𝐷𝐷𝐷𝐷𝐷𝐷 49. �𝑃𝑃

𝑅𝑅
� (𝑎𝑎) = 𝑎𝑎 + 2 51. 1

2
�𝑄𝑄
𝑅𝑅
� (𝑥𝑥) = 𝑥𝑥

𝑥𝑥−2

53. a. 𝐿𝐿 = 3𝑥𝑥 − 2 b. 10 m

P4  Exercises 

1. False; it’s the shape of a basic parabola with a vertex at (𝟎𝟎,𝟑𝟑).

3. 5.  7.  9. 

Domain: ℝ  Domain: ℝ Domain: ℝ Domain: ℝ 
Range: ℝ Range: [−2,∞) Range: (−∞, 1] Range: ℝ 

11. 13. 15. 

symmetry in 𝑥𝑥-axis translation: 2 up translation: 3 to the right 

𝑥𝑥 

−4

2 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 2 

 𝑓𝑓(𝑥𝑥) 

−2
𝑥𝑥 1 

 𝑓𝑓(𝑥𝑥) 

1 

𝑥𝑥 
1 

1 

 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 
1 

2 

 𝑔𝑔(𝑥𝑥) 

𝑥𝑥 1 

 𝑔𝑔(𝑥𝑥) 

2 

𝑥𝑥 
1 

3 

 𝑔𝑔(𝑥𝑥) 
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 Factoring - ANSWERS 

F1  Exercises 

1. false 3. Both are correct but the second one is preferable as the binomial factor has integral
coefficients.

5. 7𝑎𝑎3𝑏𝑏5 7. 𝑥𝑥(𝑥𝑥 − 3) 9. (𝑥𝑥 − 2𝑦𝑦) 11. 𝑥𝑥−4(𝑥𝑥 + 2)−2

13. 8𝑘𝑘(𝑘𝑘2 + 3) 15. −6𝑎𝑎2(6𝑎𝑎2 − 𝑎𝑎 − 3) 17. 5𝑥𝑥2𝑦𝑦2(𝑦𝑦 − 2𝑥𝑥) 19. (𝑎𝑎 − 2)(𝑦𝑦2 − 3)

21. 2𝑛𝑛(𝑛𝑛 − 2) 23. (4𝑥𝑥 − 𝑦𝑦)(4𝑥𝑥 + 1) 25. −(𝑝𝑝 − 3)(𝑝𝑝2 − 10𝑝𝑝 + 19)

27. 𝑘𝑘−4(𝑘𝑘2 + 2) 29. −𝑝𝑝−5(2𝑝𝑝3 − 𝑝𝑝2 − 3) 31. −𝑥𝑥−2𝑦𝑦−3(2𝑥𝑥𝑥𝑥 − 5) 33. (𝑎𝑎2 − 7)(2𝑎𝑎 + 1)

35. −(𝑥𝑥𝑥𝑥 + 3)(𝑥𝑥 − 2) 37. (𝑥𝑥2 − 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) 39. −(𝑦𝑦 − 3)(𝑥𝑥2 + 𝑧𝑧2) 41. (𝑥𝑥 − 6)(𝑦𝑦 + 3)

43. (𝑥𝑥2 − 𝑎𝑎)(𝑦𝑦2 − 𝑏𝑏) 45. (𝑥𝑥𝑛𝑛 + 1)(𝑦𝑦 − 3) 47. 2(𝑠𝑠 + 1)(3𝑟𝑟 − 7) 49. 𝑥𝑥(𝑥𝑥 − 1)(𝑥𝑥3 + 𝑥𝑥2 − 1)

51. no, as (2𝑥𝑥𝑦𝑦2 − 4) can still be factored to 2(𝑥𝑥𝑦𝑦2 − 2) 53. 𝑝𝑝 = 2𝑀𝑀
𝑞𝑞+𝑟𝑟

55. 𝑦𝑦 = 𝑥𝑥
3−𝑤𝑤

57. 𝐴𝐴 = (4− 𝜋𝜋)𝑥𝑥2 59. 𝐴𝐴 = (𝜋𝜋 − 1)𝑟𝑟2

F2  Exercises

1. no 3. All of them; however, the preferable answer is −(2𝑥𝑥 − 3)(𝑥𝑥 + 5).

5. 𝑥𝑥 − 3 7. 𝑥𝑥 − 5𝑦𝑦 9. (𝑥𝑥 + 3)(𝑥𝑥 + 4) 11. (𝑦𝑦 + 8)(𝑦𝑦 − 6)

13. not factorable 15. (𝑚𝑚− 7)(𝑚𝑚 − 8) 17. −(𝑛𝑛 + 9)(𝑛𝑛 − 2) 19. (𝑥𝑥 − 2𝑦𝑦)(𝑥𝑥 − 3𝑦𝑦)

21. −(𝑥𝑥 + 3)(𝑥𝑥 − 7) 23. 𝑛𝑛2(𝑛𝑛 + 2)(𝑛𝑛 − 15) 25. −2(𝑥𝑥 − 10)(𝑥𝑥 − 4) 27. 𝑦𝑦(𝑥𝑥2 + 12)(𝑥𝑥2 − 5)

29. −5(𝑡𝑡13 + 8)(𝑡𝑡13 − 1) 31. −𝑛𝑛(𝑛𝑛4 + 16)(𝑛𝑛4 − 3)

33. ±12, ±13, ±15, ±20, ±37 35. 3𝑥𝑥 − 4 37. 3𝑥𝑥 − 5

39. (2𝑦𝑦 + 1)(3𝑦𝑦 − 2) 41. (6𝑡𝑡 − 1)(𝑡𝑡 − 6) 43. (6𝑛𝑛 + 5)(7𝑛𝑛 − 5)

45. −2(2𝑥𝑥 − 3)(3𝑥𝑥 + 5) 47. (6𝑥𝑥 + 5𝑦𝑦)(3𝑥𝑥 + 2𝑦𝑦) 49. −(2𝑛𝑛 + 5)(4𝑛𝑛 − 3) 51. 2𝑥𝑥2(2𝑥𝑥 − 1)(𝑥𝑥 + 3)

53. (9𝑥𝑥𝑥𝑥 − 4)(𝑥𝑥𝑥𝑥 + 1) 55. (2𝑝𝑝2 − 7𝑞𝑞)2 57. (2𝑎𝑎 + 9)(𝑎𝑎 + 5)

59. ±3, ±4, ±11, ±17, ±28, ±59 61. (3𝑥𝑥 + 2) feet
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F3  Exercises 

1. difference of squares 3. neither 5. difference of cubes 7. difference of squares

9. perfect square 11. difference of cubes

13. 25𝑥𝑥2 + 100 = 25(𝑥𝑥2 + 4); The sum of squares is factorable in integral coefficients only if the two terms
have a common factor.

15. (𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) 17. (𝑥𝑥 − 𝑦𝑦)(𝑥𝑥2 + 𝑥𝑥𝑥𝑥 + 𝑦𝑦2)

19. (2𝑧𝑧 − 1)2 21. not factorable

23. (5− 𝑦𝑦)(25 + 5𝑦𝑦 + 𝑦𝑦2) 25. (𝑛𝑛 + 10𝑚𝑚)2

27. (3𝑎𝑎2 + 5𝑏𝑏3)(3𝑎𝑎2 − 5𝑏𝑏3) 29. (𝑝𝑝2 − 4𝑞𝑞)(𝑝𝑝4 + 4𝑝𝑝2𝑞𝑞 + 16𝑞𝑞2)

31. (7𝑝𝑝 + 2)2 33. 𝑟𝑟2(𝑟𝑟 + 3)(𝑟𝑟 − 3)

35. 1
8

(1 − 2𝑎𝑎)(1 + 2𝑎𝑎 + 4𝑎𝑎2) or   �1
2
− 𝑎𝑎� �1

4
+ 1

2
𝑎𝑎 + 𝑎𝑎2� 37. not factorable

39. 𝑥𝑥2(4𝑥𝑥2 + 11𝑦𝑦2)(4𝑥𝑥2 − 11𝑦𝑦2) 41. −(𝑎𝑎𝑎𝑎 + 5𝑐𝑐2)(𝑎𝑎2𝑏𝑏2 − 5𝑎𝑎𝑎𝑎𝑐𝑐2 + 25𝑐𝑐4)

43. (3𝑎𝑎4 − 8𝑏𝑏)2 45. (𝑥𝑥 + 8)(𝑥𝑥 − 6) 47. 2𝑡𝑡(𝑡𝑡 − 4)(𝑡𝑡2 + 4𝑡𝑡 + 16)

49. (𝑥𝑥𝑛𝑛 + 3)2 51. (4𝑧𝑧2 + 1)(2𝑧𝑧 + 1)(2𝑧𝑧 − 1) 53. 5(3𝑥𝑥2 + 15𝑥𝑥 + 25)

55. 0.01(5𝑧𝑧 − 7)2   or    (0.5𝑧𝑧 − 0.7)2 57. −3𝑦𝑦(2𝑥𝑥 − 𝑦𝑦) 59. 4(3𝑥𝑥2 + 4)

61. 2(𝑥𝑥 − 5𝑎𝑎)2 63. (𝑦𝑦 + 6 + 3𝑎𝑎)(𝑦𝑦 + 6 − 3𝑎𝑎)

65. (𝑚𝑚 + 2)(𝑚𝑚2 − 2𝑚𝑚 + 4)(𝑚𝑚− 1)(𝑚𝑚2 + 𝑚𝑚 + 1) 67. (𝑎𝑎4 + 𝑏𝑏4)(𝑎𝑎2 + 𝑏𝑏2)(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏)

69. (𝑥𝑥2 + 1)(𝑥𝑥 + 3)(𝑥𝑥 − 3) 71. (𝑎𝑎 + 𝑏𝑏 + 3)(𝑎𝑎 − 𝑏𝑏 − 3)

72. 𝑧𝑧(3𝑥𝑥𝑥𝑥 + 4𝑧𝑧)(𝑥𝑥𝑥𝑥 + 7𝑧𝑧) 75. (𝑥𝑥2 + 1)(𝑥𝑥 + 1)(𝑥𝑥 − 1)3

77. 𝑐𝑐(𝑐𝑐𝑤𝑤 + 1)2

F4  Exercises 

1. true 3. false 5. false 7. 𝑥𝑥 ∈ {−4, 1}

9. 𝑥𝑥 ∈ �− 4
5

,−1
3
� 11. 𝑥𝑥 ∈ {−6,−3} 13. 𝑥𝑥 ∈ �− 7

2
, 1� 15. 𝑥𝑥 ∈ {−6, 0}

17. 𝑥𝑥 ∈ {4} 19. 𝑥𝑥 ∈ �5
2
� 21. 𝑥𝑥 ∈ {−8, 4} 23. 𝑥𝑥 ∈ �1

3
, 3� 

25. 𝑥𝑥 ∈ �−2, 8
9
� 27. 𝑥𝑥 ∈ {0, 6} 29. 𝑥𝑥 ∈ {−4, 2} 31. 𝑥𝑥 ∈ {1, 5}
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33. 𝑥𝑥 ∈ �− 15
8

,−1� 35. 𝑥𝑥 ∈ {−5, 0, 3} 37. 𝑥𝑥 ∈ �− 8
5

, 0, 8
5
� 39. 𝑥𝑥 ∈ {−5,−1, 1, 5}

41. 𝑥𝑥 ∈ {0, 2, 4} 43. 𝑥𝑥 ∈ {−3,−1, 3} 45. 𝑥𝑥 ∈ �−2,−2
5

, 2� 

47. 3; {−3,0,3}; Do not divide by 𝑥𝑥 as 𝑥𝑥 can be equal to zero. Also, √𝑥𝑥2 = |𝑥𝑥| so in the last step, we should
obtain 𝑥𝑥 = ±3. The safest way to solve polynomial equations is by factoring and using the zero-product
property.

49. 𝑥𝑥 ∈ �1
2

, 7� 51. 𝑥𝑥 ∈ �−3, 7
3
� 53. 𝑠𝑠 = 5−2𝑝𝑝

𝑟𝑟+3
55. 𝑟𝑟 = 𝑅𝑅

𝐸𝐸−1

57. 𝑡𝑡 = 4
𝑐𝑐+2

59. 8 seconds 61. −12 or 13

63. width = 9 cm; length = 16 cm 65. width = 7 m; height = 10 m

67. 7 m by 12 m 69. 2 cm 71. 9 in
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 Rational Expressions and Functions - ANSWERS

RT1  Exercises 

1. true 3. true 5. true 7. false

9. false 11. false 13. 1
64

15. 1
512

17. −125
81

19. 3
8

21. − 14
𝑥𝑥11

23. − 36
𝑥𝑥12𝑛𝑛

25. − 4
𝑥𝑥3

27. 3𝑛𝑛4𝑚𝑚2 29. 3𝑥𝑥2

2𝑦𝑦2
31. − 𝑏𝑏15

27𝑎𝑎6

33. 27
8𝑥𝑥9𝑦𝑦3

35. 𝑥𝑥10𝑦𝑦5

510
37. 64

𝑥𝑥24𝑦𝑦12
39. 4𝑘𝑘5

𝑚𝑚2

41. −53𝑦𝑦3

𝑥𝑥30
43. − 1

38𝑥𝑥8𝑦𝑦8
45. 1

5𝑎𝑎2
47. 3𝑛𝑛𝑥𝑥

49. 𝑥𝑥𝑏𝑏+5 51. 2.6 ∙ 1010 53. 1.05 ∙ 10−8 55. 670,000,000

57. 2,000,000,000,000 59. 1048576 = 1.05 ∙ 106 61. 1.3338 ∙ 10−10

63. 5 ∙ 10−5 65. 2.5 ∙ 107 67. 1.25 ∙ 103 69. 18,108.11 $/person

71. 1.59 ∙ 107 ft3/min;  3.816 ∙ 108 ft3/day 73. 81 times

RT2  Exercises

1. false 3. true 5. 𝑓𝑓(−1) = 1
3

, 𝑓𝑓(0) = 0,   𝑓𝑓(2) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

7. 𝑓𝑓(−1) = 1
2

, 𝑓𝑓(0) = 1
3

,   𝑓𝑓(2) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 9. 6;  𝐷𝐷 = ℝ ∖ {6};   𝐷𝐷 = (−∞, 6) ∪ (6,∞)

11. 4
5

;  𝐷𝐷 = ℝ ∖ �4
5
� ;   𝐷𝐷 = �−∞, 4

5
� ∪ �4

5
,∞� 13. none;   𝐷𝐷 = ℝ;     𝐷𝐷 = (−∞,∞)

15. −7,−5;  𝐷𝐷 = ℝ ∖ {−7,−5};   𝐷𝐷 = (−∞,−7) ∪ (−7,−5) ∪ (−5,∞)

17. b., d., and e. are equivallent to −1 19. 8𝑎𝑎2

𝑏𝑏2
21. −1

23. 1 25. 4𝑥𝑥−5
7

27. 𝑦𝑦−3
𝑦𝑦+3

29. 6
7

31. −𝑚𝑚+5
4 33. 𝑡𝑡+5

𝑡𝑡−5
35. 𝑥𝑥−8

𝑥𝑥+4
37. 𝑥𝑥2+𝑥𝑥𝑥𝑥+𝑦𝑦2

𝑥𝑥+𝑦𝑦
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39. 10𝑎𝑎𝑏𝑏2 41. 3
2𝑦𝑦4

43. 10
9𝑎𝑎2

45. −𝑦𝑦+5
2𝑦𝑦

47. (2𝑎𝑎 − 1)(3𝑎𝑎 − 8) 49. 𝑥𝑥2−16
𝑥𝑥(𝑥𝑥+3) 51. 1

𝑏𝑏(𝑏𝑏−1) 53. 𝑥𝑥(3𝑥𝑥+2)
(3𝑥𝑥+1)(3𝑥𝑥−2)

55. 𝑎𝑎2+𝑎𝑎𝑎𝑎+𝑏𝑏2

𝑎𝑎−𝑏𝑏
57. 𝑥𝑥2+4𝑥𝑥+16

(𝑥𝑥+4)2 59. 1
2𝑥𝑥+3𝑦𝑦

61. − 7𝑥𝑥+3
7

63. 15
𝑦𝑦2

65. 2𝑏𝑏
𝑎𝑎+2𝑏𝑏

67. 𝑥𝑥−6
𝑥𝑥+5

69. 𝑓𝑓(𝑥𝑥) ∙ 𝑔𝑔(𝑥𝑥) = 2(𝑥𝑥−4)
(𝑥𝑥+1)2;  𝑓𝑓(𝑥𝑥) ÷ 𝑔𝑔(𝑥𝑥) = 𝑥𝑥−4

2𝑥𝑥2  

71. 𝑓𝑓(𝑥𝑥) ∙ 𝑔𝑔(𝑥𝑥) = −(𝑥𝑥 − 3)2; 𝑓𝑓(𝑥𝑥) ÷ 𝑔𝑔(𝑥𝑥) = − (𝑥𝑥−4)2

(𝑥𝑥+3)2

RT3  Exercises 

1. a. 18;  b. 18 3. 36;   41
36

5. 240;   221
240

7. 72𝑎𝑎5𝑏𝑏4

9. 𝑥𝑥(𝑥𝑥 + 2)(𝑥𝑥 − 2) 11. (𝑥𝑥 − 1)2 13. 𝑦𝑦(𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) 15. (𝑥𝑥 + 1)2(𝑥𝑥 − 5)

17. (𝑥𝑥 − 3)2(2𝑥𝑥 + 1)(𝑥𝑥 − 1) 19. 6𝑥𝑥3(𝑥𝑥 + 2)2(𝑥𝑥 − 2)

21. true; 1
3−𝑥𝑥

 is opposite to 1
𝑥𝑥−3

23. false; 3
4

+ 𝑥𝑥
5

= 3∙5+4𝑥𝑥
20

= 4𝑥𝑥+15
20

 

25. 8
𝑎𝑎+1

27. 3𝑛𝑛−3
𝑛𝑛−2

29. 1
𝑎𝑎+7

31. 𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2

33. 2𝑥𝑥2−𝑥𝑥+14
(𝑥𝑥+3)(𝑥𝑥−4)

35. (𝑥𝑥+𝑦𝑦)2

(𝑥𝑥+𝑦𝑦)(𝑥𝑥−𝑦𝑦)
37. 𝑦𝑦−34

20(𝑦𝑦+2)
39. 4𝑦𝑦+17

𝑦𝑦2−4

41. 𝑥𝑥(3𝑥𝑥+19)
(𝑥𝑥−4)(𝑥𝑥−2)(𝑥𝑥+3)

43. 3𝑦𝑦2+7𝑦𝑦+14
(2𝑦𝑦−5)(𝑦𝑦+2)(𝑦𝑦−1)

45. 2𝑥𝑥2−13𝑥𝑥+7
(𝑥𝑥+3)(𝑥𝑥−3)(𝑥𝑥−1)

47. −𝑦𝑦
(𝑦𝑦+3)(𝑦𝑦−1)

49. −�14𝑦𝑦2+3𝑦𝑦−3�
(2𝑦𝑦+1)(2𝑦𝑦−1)

51. 6+𝑥𝑥2

3𝑥𝑥3
53. 𝑥𝑥−14

(𝑥𝑥+1)(𝑥𝑥−4)
55. −�2𝑥𝑥2+5𝑥𝑥−2�

(𝑥𝑥+2)(𝑥𝑥+1)

57. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 𝑥𝑥2+𝑥𝑥+8
(𝑥𝑥+2)(𝑥𝑥−3)

;   (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥) = 𝑥𝑥2−7𝑥𝑥−8
(𝑥𝑥+2)(𝑥𝑥−3)

59. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 3𝑥𝑥2−2𝑥𝑥+3
(𝑥𝑥−1)2(𝑥𝑥+3)

;  (𝑓𝑓 − 𝑔𝑔)(𝑥𝑥) = 3𝑥𝑥2−4𝑥𝑥−3
(𝑥𝑥−1)2(𝑥𝑥+3)

61. every 12th day 63. 100(𝑃𝑃1−𝑃𝑃0)
𝑃𝑃0
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RT4  Exercises 

1. 5
16

3. − 111
160 5. 𝑥𝑥𝑦𝑦2 7. 𝑎𝑎−1

4𝑎𝑎 +1

9. −9(𝑥𝑥−4)
2(𝑥𝑥+3)

11. 2𝑦𝑦−𝑥𝑥
2𝑦𝑦+𝑥𝑥

13. 𝑎𝑎2(𝑏𝑏−3)
𝑏𝑏2(𝑎𝑎−1)

15. −(2𝑥𝑥+𝑦𝑦)
𝑥𝑥

17. 𝑛𝑛−3
𝑛𝑛

19. 1
𝑎𝑎(𝑎𝑎−ℎ) 21. 4

5
23. 𝑎𝑎+𝑏𝑏

𝑎𝑎𝑎𝑎

25. 
(𝑥𝑥−3)(𝑥𝑥+1)
𝑥𝑥2+𝑥𝑥−1

27. −𝑎𝑎𝑎𝑎(𝑎𝑎−𝑏𝑏)
𝑎𝑎2−𝑎𝑎𝑎𝑎+𝑏𝑏2

29. The expressions  𝑥𝑥
−2+𝑦𝑦−2

𝑥𝑥−1+𝑦𝑦−1
  and  𝑥𝑥+𝑦𝑦

𝑥𝑥2+𝑦𝑦2
  are not equivalent, as if we assume for example that 𝑥𝑥 = 1 and 𝑦𝑦 = 2, 

the first expression results in 5
6
 while the second results in 3

5
. Notice that the powers with negative exponents 

can’t be ‘shifted to a different level’ due to the addition in the numerator and denominator. Only powers that 
are factors of the numerator or denominator can be ‘shifted to a different level’ to change the sign of their 
exponents. 

31. 𝑥𝑥+1
3𝑥𝑥

33. 𝑛𝑛
𝑛𝑛+1

35. −2(2𝑎𝑎−ℎ)
𝑎𝑎2(𝑎𝑎+ℎ)2

37. 1
(𝑎𝑎−2)(𝑎𝑎+ℎ−2)

39. −3𝑥𝑥−2
𝑥𝑥−2

RT5  Exercises 

1. ℝ 3. ℝ ∖ {−4,11} 5. ℝ ∖ {−5,5,7} 7. 𝑥𝑥 = 17
2

9. 𝑥𝑥 ∈ {−8,−1} 11. 𝑟𝑟 = 2 13. 𝑟𝑟 = 30 15. 𝑦𝑦 = 3

17. 𝑥𝑥 = −5 19. 𝑥𝑥 ∈ {−3, 1} 21. 𝑦𝑦 = −3 23. 𝑘𝑘 = 5
4

25. 𝑦𝑦 = 4 27. 𝑥𝑥 = 1
5

29. 𝑥𝑥 = 31
5 31. 𝑥𝑥 = −2

33. 𝑥𝑥 = 2 35. 𝑥𝑥 ∈ �− 1
3

, 5� 37. 𝑥𝑥 ∈ �− 5
2

, 3� 39. 𝑥𝑥 ∈ {−2, 6}

41. 𝐷𝐷 = ℝ ∖ {0};   range = ℝ ∖ {0}; 43. 𝐷𝐷 = ℝ ∖ {3};   range =  ℝ ∖ {0};
VA: 𝑥𝑥 = 0;  HA: 𝑦𝑦 = 0 VA: 𝑥𝑥 = 3;  HA: 𝑦𝑦 = 0
𝑓𝑓(𝑥𝑥) = 2

𝑥𝑥

𝑥𝑥 2 

1 

ℎ(𝑥𝑥) =
2

𝑥𝑥 − 3

𝑥𝑥 

1 

3 
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45. 𝐷𝐷 = ℝ ∖ {−2};   range = ℝ ∖ {1}; 47. 𝑔𝑔(𝑥𝑥) = 2
𝑥𝑥+2

VA: 𝑥𝑥 = −2;  HA: 𝑦𝑦 = 1 VA: 𝑥𝑥 = −2;  HA: 𝑦𝑦 = 0 

49. 𝑔𝑔(𝑥𝑥) = −1
2𝑥𝑥+3

51. 𝑥𝑥 ∈ �−1, 1
2
� 

VA: 𝑥𝑥 = −3
2
;  HA: 𝑦𝑦 = 0 

53. a.  𝐷𝐷(10) = 0.9    If a smoker is 10 times more likely to die of lung
cancer than a non-smoker, then 90% of deaths is 
caused by smoking.  

b. 𝑥𝑥 = 2

c. The incidence rate is 0 if a smoker is as likely to die of lung cancer
as a nonsmoker.

RT6  Exercises 

1. 𝑞𝑞 = 15 3. factorization of 𝑘𝑘 5. 𝑎𝑎 = 𝐹𝐹
𝑚𝑚

7. 𝑑𝑑1 = 𝑊𝑊1𝑑𝑑2
𝑊𝑊2

9. 𝑡𝑡 = 2𝑠𝑠
𝑣𝑣1+𝑣𝑣2

11. 𝑅𝑅 = 𝑟𝑟1𝑟𝑟2
𝑟𝑟1+𝑟𝑟2

13. 𝑞𝑞 = 𝑓𝑓𝑓𝑓
𝑝𝑝−𝑓𝑓

15. 𝑣𝑣 = 𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

 

17. 𝑏𝑏 = 2𝐴𝐴
ℎ
− 𝑎𝑎  or  𝑏𝑏 = 2𝐴𝐴−𝑎𝑎ℎ

ℎ
19. 𝑠𝑠 = 𝑅𝑅𝑅𝑅

𝑔𝑔−𝑅𝑅
21. 𝑛𝑛 = 𝐼𝐼𝐼𝐼

𝐸𝐸−𝐼𝐼𝐼𝐼

23. 𝑟𝑟 = 𝑅𝑅𝑅𝑅
𝐸𝐸−𝑒𝑒

25. 𝑅𝑅 = 𝑉𝑉
𝜋𝜋ℎ2

+ ℎ
3

 or  𝑅𝑅 = 3𝑉𝑉+𝜋𝜋ℎ3

3𝜋𝜋ℎ2

27. ℎ = 2𝑅𝑅2𝑔𝑔
𝑉𝑉2

− 𝑅𝑅  or  ℎ = 2𝑅𝑅2𝑔𝑔−𝑉𝑉2𝑅𝑅
𝑉𝑉2

29. 12.375 kg 31. 77 km

33. ~1142 zebras 35. ~155 white-tailed eagles

37. 𝑃𝑃𝑃𝑃 = 6; 𝑃𝑃𝑃𝑃 = 3; 𝑆𝑆𝑆𝑆 = 4.2

39. ~17.8 km/h 41. 4.8 km/h 43. 50 km/h 45. 1275 km

𝑥𝑥 

1 

𝑔𝑔(𝑥𝑥) =
𝑥𝑥 − 1
𝑥𝑥 + 2

−2

𝑦𝑦 

𝑥𝑥 

1 

−2

𝑦𝑦 

𝑥𝑥 1 

1 
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47. 2 km 49. 4(𝑥𝑥+𝑦𝑦)
𝑥𝑥𝑥𝑥

51. 15 hr 53. 24 hr

55. 2450 people 57. 20 km 59. 12 hours 61. 1.4 m

63. 2651 km 65. ~1802 N
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 Radicals and Radical Functions - ANSWERS

RD1  Exercises 

1. 7 3. not a real number 5. 0.04 7. 4

9. 0.2 11. 1
0.03

13. 0.2 15. not a real number

17. a. negative b. not a real number  c. 0 19. 15 21. |𝑥𝑥|

23. 9|𝑥𝑥| 25. |𝑥𝑥 + 3| 27. |𝑥𝑥 − 2| 29. −5

31. −5𝑎𝑎 33. 5|𝑥𝑥| 35. 𝑦𝑦 − 3 37. |2𝑎𝑎 − 𝑏𝑏|

39. |𝑎𝑎 + 1|3 41. −𝑘𝑘5 43. 18.708 45. 1.710

47. 8 49. 11 51. 50 53. 14 m by 7 m; 42 m

55. 𝐷𝐷 = [−1,∞) 57. 𝐷𝐷 = [0,∞) 59. 𝐷𝐷 = [0,∞)
range = [0,∞) range = (−∞, 0] range = [−3,∞)

Translation: 1 step to the left  Reflection in 𝑥𝑥-axis Translation: 3 steps down 

61. 𝐷𝐷 = ℝ 63. 𝐷𝐷 = [0,∞) 65. 𝐷𝐷 = [0,∞)
range = ℝ range = (−∞, 0] range = [0,∞)

Translation: 2 steps to the right Reflection in 𝑥𝑥-axis 

𝑥𝑥 

2 

−1

𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 1 

𝑥𝑥 4 

1 

ℎ(𝑥𝑥) = −√𝑥𝑥 

𝑥𝑥 

−3 

1 

𝑔𝑔(𝑥𝑥) = √𝑥𝑥 − 3 

𝑥𝑥 

1 

1 

𝑓𝑓(𝑥𝑥) = √𝑥𝑥 − 23  

𝑥𝑥 4 

1 

ℎ(𝑥𝑥) = −√𝑥𝑥3 + 2 

𝑥𝑥 

1 

4 

𝑔𝑔(𝑥𝑥) = 2√𝑥𝑥
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67. 𝐷𝐷 = [−3,∞) 69. 𝐷𝐷 = [2,∞) 71. 𝐷𝐷 = (−∞, 2]
range = [0,∞) range = (−∞, 0] range = [0,∞)

73. 75.   
 

77. ~186 cm 79. 3.25 m 81. 700√15 m2

RD2  Exercises

1. a.-B.; b.-A.; c.-C.; d.-F.; e.-D.; f.-E. 3. 2 5. −343

7. − 1
10

9. 8
27

11. not a real number 13. −2

15. 5
1
2 17. 𝑥𝑥3 19. 4𝑥𝑥2 21. 5𝑥𝑥−

5
2

23. 32 25. √𝑥𝑥35 27. √93 29. 2
√𝑥𝑥

31. 3
7
8 33. 2

3
4 35. 5

5
4 37. 𝑥𝑥

1
2 ∙ 𝑦𝑦

10
3

39. 𝑥𝑥 59

𝑦𝑦
1
2

41. 5𝑥𝑥
4

15 43. √𝑥𝑥3 45. 𝑦𝑦−3 or  1
𝑦𝑦3

47. √93 49. 2𝑦𝑦2 51. 2𝑥𝑥2�2𝑦𝑦23 53. 2𝑥𝑥�𝑦𝑦

𝑥𝑥 

3 

−3

𝑓𝑓(𝑥𝑥) = √3𝑥𝑥 + 9

𝑥𝑥 2 
−2 

ℎ(𝑥𝑥) = −√2𝑥𝑥 − 4 

𝑥𝑥 

2 

2 

𝑔𝑔(𝑥𝑥) = √8 − 4𝑥𝑥

𝑥𝑥 

2 

−1

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 + 1 
𝑔𝑔(𝑥𝑥) = √2𝑥𝑥 + 1 
ℎ(𝑥𝑥) = √2𝑥𝑥 + 13  

𝑥𝑥 −2

1 

𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥 + 1 

𝑔𝑔(𝑥𝑥) = �1
2
𝑥𝑥+1

ℎ(𝑥𝑥) = �1
2𝑥𝑥+1

3
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55. √556 57. √9𝑎𝑎56 59. 𝑥𝑥√𝑥𝑥 61. √𝑥𝑥
𝑥𝑥2

 or  1
𝑥𝑥√𝑥𝑥

63. 2
�𝑥𝑥512  65. �𝑥𝑥𝑥𝑥12   67. √𝑥𝑥24 69. √𝑥𝑥38

71. To treat an equation as an identity, the equation must be true for all variable values in the domain. The fact
that the equation is true for specific values does not guarantee that it is true for all values of 𝑥𝑥 and 𝑦𝑦. A
counterexample: Let 𝑥𝑥 = 𝑦𝑦 = 2. Then √2𝑛𝑛 + 2𝑛𝑛𝑛𝑛 = √2 ∙ 2𝑛𝑛𝑛𝑛 = 2√2𝑛𝑛 ≠ 2 + 2 = 4.

73. 30 beats per minute

RD3  Exercises 

1. 5 3. 3√2 5. 30√3 7. 3𝑥𝑥4 √2

9. 4𝑥𝑥3𝑦𝑦�6𝑥𝑥𝑥𝑥 11. 2𝑥𝑥2 13. 3√2 15. √6

17. 2𝑏𝑏√𝑏𝑏 19. 4𝑥𝑥�𝑦𝑦 21. 2 23. 2𝑎𝑎 √𝑏𝑏3

25. 12𝑥𝑥2𝑦𝑦4�𝑦𝑦 27. −5𝑎𝑎2𝑏𝑏3𝑐𝑐4 29. 𝑚𝑚2𝑛𝑛5

2
31. 𝑎𝑎3𝑏𝑏3√7𝑎𝑎

33. 2𝑥𝑥2𝑦𝑦3 √2𝑥𝑥25 35. −3𝑎𝑎3𝑏𝑏2 √2𝑎𝑎3𝑏𝑏24 37. 4
7

39. 11
𝑦𝑦

41. 3𝑎𝑎 √𝑎𝑎23

4
43. 2𝑥𝑥3

𝑦𝑦𝑧𝑧4
45. √6 47. −𝑥𝑥2√𝑥𝑥

49. −√𝑥𝑥𝑥𝑥
𝑥𝑥2𝑦𝑦

 51. 𝑥𝑥2 √𝑥𝑥6

𝑦𝑦𝑧𝑧2

53. This is not correct as the radical of a sum is not the sum of radicals. We can simplify it by factoring the
radicand:   √𝑥𝑥3 + 𝑥𝑥2 = �𝑥𝑥2(𝑥𝑥 + 1) = |𝑥𝑥|√𝑥𝑥 + 1

55. √𝑥𝑥710 57. 2 √2415   or  2 √1615 59. √𝑥𝑥4 61. √27𝑎𝑎1115

𝑎𝑎

63. √2𝑥𝑥56 65. √𝑥𝑥1112 67. √6 69. √𝑛𝑛2 − 9

71. 2√31 73. 2√5 75. √41
7

77. 2√38

79. �𝑝𝑝2 + 𝑞𝑞2 81. ~7.05 meters 83. (−4, 0) and (4, 0) 85. 30 m
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RD4  Exercises 

1. No. The equation must be true for all 𝑥𝑥 ≥ 0. 3. 7√3 5. 13𝑦𝑦√3𝑥𝑥

7. 14√2 + 2√3 9. 11√23 11. (1 + 6𝑎𝑎)√5𝑎𝑎

13. (4𝑥𝑥 − 6)√𝑥𝑥  or  2(2𝑥𝑥 − 3)√𝑥𝑥 15. 24√2𝑥𝑥 17. (𝑥𝑥 + 1)√6𝑥𝑥3

19. −8𝑛𝑛√2 21. (6𝑎𝑎𝑏𝑏2 − 9𝑎𝑎𝑎𝑎)√𝑎𝑎𝑎𝑎 23. 5𝑥𝑥�𝑥𝑥𝑥𝑥4  25. −𝑥𝑥√2𝑥𝑥3 + √2
or 3𝑎𝑎𝑎𝑎(2𝑏𝑏 − 3)√𝑎𝑎𝑎𝑎 

27. √𝑥𝑥 + 3 29 (5− 𝑥𝑥)√𝑥𝑥 − 1 31. 3√3
4

33. 4𝑎𝑎 √𝑎𝑎4

9
 

35. Error: cannot add unlike radicals (see line 3). Correct solution: 2√2 + 2√23 = 2�√2 + √23 �  

37. 3√5 − 10 39. 9− 2√5 41. −6 43. 1

45. −13 47. 30 − 10√5 49. 𝑎𝑎 − 25𝑏𝑏 51. 9 + 6√2

53. 38 + 12√10 55. 22 − 13√3 57. �4𝑦𝑦23 − 4�2𝑦𝑦3 − 5 59. 1

61. (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 13𝑥𝑥√5𝑥𝑥;  (𝑓𝑓𝑓𝑓)(𝑥𝑥) = 150𝑥𝑥3 63. √10
4

65. 2√6

67. −√5 69. �10𝑦𝑦
8

71. 𝑦𝑦 �9𝑥𝑥2𝑦𝑦3

3𝑥𝑥2
73. �𝑝𝑝𝑝𝑝34  

75. 6−√2
2

77. 6 + 2√6 79. 3√5−2√3
11

81. √𝑚𝑚 − 2

83. 3+4√3𝑥𝑥+4𝑥𝑥
3−4𝑥𝑥

85. 2𝑎𝑎+2√𝑎𝑎𝑎𝑎
𝑎𝑎−𝑏𝑏

87. 1− 2√5 89 2−9√2
3

91. 
6−2�6𝑝𝑝

3
93. Yes. √3−1

1+√3
 after rationalization of the denominator becomes 2 − √3. 

 95. 2√3 ≈ 3.5 cm

RD5  Exercises 

1. False, as the radicals do not contain a variable. 3. True, as the radical cannot be negative.

5. 𝑥𝑥 = 39
7

7. 𝑥𝑥 = 2
3

9. no solution 11. 𝑥𝑥 = −27

13. 𝑦𝑦 = 19 15. 𝑎𝑎 = 1
25 17. 𝑟𝑟 = 5 19. 𝑦𝑦 = 18
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21. 𝑥𝑥 = 9 23. 𝑥𝑥 ∈ {−1, 3} 25. 𝑦𝑦 = 4 27. 𝑥𝑥 = 5

29. not correct, as (8 − 𝑥𝑥)2 = 64 − 16𝑥𝑥 + 𝑥𝑥2 31. 𝑥𝑥 = 2 33. 𝑝𝑝 = 9

35. No solution 37. 𝑡𝑡 = −1 39. No solution 41. 𝑛𝑛 = 3

43. 𝑛𝑛 = −2 45. 𝑎𝑎 ∈ {2, 6} 47. No solution 49. 𝑚𝑚 = 2

51. 𝑥𝑥 ∈ �−1, 1
3
� 53. 𝑥𝑥 ∈ {1,9} 55. 𝑥𝑥 = 4

9
57. 𝑘𝑘 ∈ {−2,−1}

59. 𝑥𝑥 ∈ {−5, 5} 61. 𝑎𝑎 ∈ �0, 125
4
� 63. 𝐿𝐿 = 𝐶𝐶𝑍𝑍2 65. 𝑚𝑚 = 2𝐾𝐾

𝑉𝑉2

67. 𝐹𝐹 = 𝑀𝑀𝑀𝑀
𝑟𝑟2

 69. 𝐶𝐶 = 1
4𝜋𝜋2𝐹𝐹2𝐿𝐿

71. 𝑟𝑟 = 𝑎𝑎
4𝜋𝜋2𝑁𝑁2

73. 189 cm

75. 22 m

RD6  Exercises 

1. The mistake is in the first step – the product rule for radicals cannot be used, so we need to convert into 𝑖𝑖
notation before multiplying: √−3 ⋅ √−15 = √3 𝑖𝑖 ⋅ √15 𝑖𝑖 = √45 𝑖𝑖2 = 3√5 (−1) = −𝟑𝟑√𝟓𝟓

3. Both are correct because (8𝑖𝑖)2 = 82 ⋅ −1 = −64 and (−8𝑖𝑖)2 = (−8)2 ⋅ −1 = −64.

5. 10𝑖𝑖 7. 7√2 𝑖𝑖 9. −7 11. −7√3

13. −4√2 𝑖𝑖 15. 24√10 𝑖𝑖 17. −73 + 31𝑖𝑖 19. −90 − 46√3 𝑖𝑖

21. 112 23. 18 + 2𝑖𝑖 25. 6 − 82𝑖𝑖 27. −13 + 84𝑖𝑖

29. 181 31. 1 33. 𝑖𝑖 35. −𝑖𝑖

37. 2− 2√14 𝑖𝑖 39. 1
5

+ √39
10

𝑖𝑖 41. 6
5
𝑖𝑖 43. 15

74
− 21

74
𝑖𝑖 

45. 7
25

+ 24
25
𝑖𝑖 47. 97

137
+ 27

137
𝑖𝑖 49. Yes, because (−2𝑖𝑖)2 = (−2)2𝑖𝑖2 = −4.

51. Yes, because substituting 𝑥𝑥 = 3− 2𝑖𝑖 into the equation gives (3 − 2𝑖𝑖)2 − 6(3− 2𝑖𝑖) + 13 = (9 − 12𝑖𝑖 +
4𝑖𝑖2) − 18 + 12𝑖𝑖 + 13 = 4 + 4𝑖𝑖2 = 4− 4 = 0.

53. No, because substituting 𝑥𝑥 = 5 + 𝑖𝑖  into the equation gives (5 + 𝑖𝑖)2 + 5(5 + 𝑖𝑖) + 60 = (25 + 10𝑖𝑖 + 𝑖𝑖2) +
25 + 5𝑖𝑖 + 60 = 110 + 15𝑖𝑖 + 𝑖𝑖2 = 110 + 15𝑖𝑖 − 1 = 109 + 15𝑖𝑖 ≠ 0.
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 Quadratic Equations and Functions - ANSWERS

Q1  Exercises 

1. False 3. True 5. False 7. False

9. a) b) (−3,0), (1,0) c) 𝑥𝑥 ∈ {−3,1}

The solutions are the first 
coordinates of the 𝑥𝑥-
intercepts. 

11. a)  b) (0,0), (5,0) c) 𝑥𝑥 ∈ {0,5}

The solutions are the first 
coordinates of the 𝑥𝑥-
intercepts. 

13. a)    b) (−4,0), �32, 0� c) 𝑥𝑥 ∈ �−4, 3
2
� 

The solutions are the first 
coordinates of the 𝑥𝑥-
intercepts. 

15. 𝑥𝑥 ∈ �−4√2, 4√2� 17. 𝑛𝑛 ∈ �−2√6, 2√6� 19. 𝑦𝑦 ∈ �−2√10, 2√10� 21. 𝑥𝑥 ∈ {−7,1}

23. 𝑡𝑡 ∈ �−2−2√3
5

,−2+2√3
5

� 25. 𝑦𝑦 ∈ �−4− 2√11,−4 + 2√11� 27. 𝑦𝑦 ∈ �44
5

, 56
5
� 

29. 𝑥𝑥 ∈ �−3−5𝑖𝑖
4

,−3+5𝑖𝑖
4

� 31. 𝑥𝑥 ∈ �1−3√2
2

, 1+3√2
2

� 33. 𝑦𝑦 ∈ {0,3} 35. 𝑛𝑛 = −2

37. 𝑦𝑦 ∈ �−7−√53
2

,−7+√53
2

� 39. 𝑎𝑎 ∈ �−1− √2 𝑖𝑖,−1 + √2 𝑖𝑖�

𝑥𝑥 

−4 

1 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 − 3 

−3 

𝑥𝑥 

−4 

0 

𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 5𝑥𝑥 

5 

𝑥𝑥 

3 

1 

𝑓𝑓(𝑥𝑥) = −1
2
𝑥𝑥2 − 5

4
𝑥𝑥 + 3 

−4 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 
𝟏𝟏 0 
𝟎𝟎 −3
−𝟏𝟏 −4
−𝟐𝟐 −3
−𝟑𝟑 0 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 
𝟎𝟎 0 
𝟏𝟏 4 
𝟐𝟐 6 
𝟓𝟓
𝟐𝟐 6.25 
𝟑𝟑 6 
𝟒𝟒 4 
𝟓𝟓 0 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 
−𝟒𝟒 0 
−𝟐𝟐 3.5 
−𝟏𝟏 3.75 
𝟎𝟎 3 
𝟏𝟏 1.25 
𝟐𝟐 −1.5
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41. 𝑥𝑥 ∈ �6− 2√5, 6 + 2√5� 43. 𝑥𝑥 ∈ �−1−√7
3

, −1+√7
3

� 45. 𝑥𝑥 ∈ �4−√3
3

, 4+√3
3
� 

47. 𝑥𝑥 ∈ �2−√3
3

, 2+√3
3
� 49. 𝑥𝑥 ∈ �1−2√19

5
, 1+2√19

5
� 51. 𝑥𝑥 ∈ �1 − 2√2, 1 + 2√2�

53. 𝑥𝑥 ∈ {−2,−1} 55. 𝑥𝑥 ∈ �−1−√11 𝑖𝑖
2

,−1+√11 𝑖𝑖
2

� 57. 𝑥𝑥 = 4

59. 𝑎𝑎 = 1 − √5 ≈ −1.24,  or  𝑎𝑎 = 1 + √5 ≈ 3.24 61. 𝑥𝑥 = −5−√11
2

≈ −4.16,  or  𝑥𝑥 = −5+√11
2

≈ −0.84 

63. 𝑦𝑦 = −1−√7
6

≈ −0.27,  or  𝑦𝑦 = −1+√7
6

≈ 0.61 65. 𝑥𝑥 = 17−√249
10

≈ 0.12,  or  𝑥𝑥 = 17−√249
10

≈ 3.28 

67. 𝑥𝑥 = 5−√7
6

≈ 0.39,  or  𝑥𝑥 = 5+√7
6

≈ 1.27 69. 2 rational solutions; factoring possible

71. 2 real solutions; use quadratic formula 73. 1 double rational solution; factoring possible

75. 𝑘𝑘 = 25 77. No, as the product of a rational and irrational number is irrational. This would
contradict the fact that the quadratic equation has integral coefficients.

79. 𝑥𝑥 = 1 ± √10 81. 𝑥𝑥 = 5±2√6
2

83. 𝑥𝑥 ∈ {−3,2} 85. 𝑥𝑥 = −1 ± 2𝑖𝑖

87. 𝑥𝑥 ∈ �− 3
2

, 1�  89. 𝑥𝑥 = 5 ± √53

Q2  Exercises

1. The solution is incorrect as the question calls for the values of 𝑥𝑥 not 𝑎𝑎.

3. 𝑥𝑥 ∈ �−√5,−√2,√2,√5� 5. 𝑥𝑥 ∈ �1
4

, 16� 7. 𝑎𝑎 ∈ {−1,2}

9. 𝑥𝑥 = 9 11. 𝑥𝑥 ∈ �−1,3,1− √2, 1 + √2�   13. 𝑥𝑥 = 8

15. 𝑢𝑢 ∈ �− 8
3

,−1� 17. 𝑥𝑥 ∈ �−1 ± √2, 3 ± √10� 19. 𝑟𝑟 = ±� 𝑉𝑉
𝜋𝜋ℎ

21. 𝑠𝑠 = ±� 3
𝑉𝑉ℎ

23. 𝑠𝑠 = ±�𝑘𝑘𝑞𝑞1𝑞𝑞2
𝑁𝑁

25. 𝐻𝐻 = ±�703𝑊𝑊
𝐼𝐼

27. 𝑟𝑟 = −𝜋𝜋ℎ±√𝜋𝜋2ℎ2+2𝜋𝜋𝜋𝜋
2𝜋𝜋

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑 + 𝟐𝟐 

2 

−2 −1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝒙𝒙 

1 

1 

−3
𝒈𝒈(𝒙𝒙) = −𝟑𝟑 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟖𝟖𝟖𝟖 + 𝟏𝟏𝟏𝟏 

1 

4 
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29. 𝑎𝑎 = ± 𝑏𝑏𝑏𝑏
√1−𝑡𝑡2

31. 𝐼𝐼 = 𝐸𝐸±√𝐸𝐸2−4𝑃𝑃𝑃𝑃
2𝑅𝑅

33. 𝑣𝑣 =
𝑐𝑐 �𝑚𝑚2−𝑚𝑚0

2

𝑚𝑚 35. 
(𝑟𝑟+𝑅𝑅)�𝑝𝑝𝑝𝑝

𝑅𝑅

37. a. 𝑟𝑟 − 𝑐𝑐 b. 𝑟𝑟 + 𝑐𝑐 39. 7 + 2√35,  10 + 2√35,  and  17 + 2√35

41. 5 ft by 12 ft 43. 10 ft 3 in 45. 9 in by 13 in 47. 10√2 m by 5√2 m

49. 1.5 ft 51. 12 cm 53. 7 cm by 13 cm 55. 60 km/h

57. Skyhawk at 250 km/h; Mooney Bravo at 350 km/h 59. ~10.8 km/h

61. 800 km/h and 840 km/h 63. 7 hr 32 min

65. Helen: ~16 hr 31 min; Monica: ~15 hr 31 min 67. smaller-diameter pipe: 2 hr;
larger-diameter pipe: 3 hr

69. ~3.8 sec 71. 4.2%

Q3  Exercises 

1. a.-III; b.-I; c.-IV; d.-II 3. a.-II; b.-III; c.-I; d.-IV

5. wider; opens down 7. narrower; opens up 9. narrower; opens up

Range = (−∞, 0] Range = [0,∞)  Range = [0,∞) 

11. 𝑆𝑆𝑥𝑥; shift 2 units up 13. 𝑆𝑆𝑥𝑥; shift 2 units to the left 15. vertical dilation by 1
2
; 

shift 2 units to the left 

Domain = ℝ  Domain = ℝ   Domain = ℝ  
Range = (−∞, 2] Range = (−∞, 0]  Range = [0,∞) 
Axis of symmetry: 𝑥𝑥 = 0 Axis of symmetry: 𝑥𝑥 = −2 Axis of symmetry: 𝑥𝑥 = −2 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −
𝟏𝟏
𝟐𝟐𝒙𝒙

𝟐𝟐 

−2
2 𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟓𝟓
𝟐𝟐 𝒙𝒙

𝟐𝟐 

2 

1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟏𝟏
𝟑𝟑 𝒙𝒙

𝟐𝟐 

3 

3 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐 + 𝟐𝟐 

2 

2 𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −(𝒙𝒙+ 𝟐𝟐)𝟐𝟐 

−4

−2
𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟏𝟏
𝟐𝟐

(𝒙𝒙+ 𝟐𝟐)𝟐𝟐

2 

−2



A20 

17. vertex = (0,3) 19. vertex = (2,−4) 21. vertex = (−1,5)

shape of  3
4
𝑥𝑥2; opens down shape of  5

2
𝑥𝑥2; opens up shape of  3𝑥𝑥2; opens down

𝑥𝑥-int.: (−2,0), (2,0) 𝑥𝑥-int.: �10−2√105 , 0�, �10+2√105 , 0� 𝑥𝑥-int.: �−3−√153 , 0�, �−3+√153 , 0� 
𝑦𝑦-int.: (0,3)    𝑦𝑦-int.: (0,6) 𝑦𝑦-int.: (0,2) 

𝑆𝑆𝑥𝑥; vertical dilation by 3
4
; vertical dilation by 5

2
; 𝑆𝑆𝑥𝑥; vertical dilation by 3; 

shift 3 units up shift 2 units to the right; shift 1 unit to the left; 
shift 4 units down  shift 5 units up  

23. vertex = (3,−2) 25. vertex = (1,0) 27. vertex = (−2,−3)
shape of  4

3
𝑥𝑥2; opens up  

𝑥𝑥-int.: (−2,0), (2,0) 
𝑦𝑦-int.: (0,3)    

 
     

Minimum value = 0; Minimum value = −3; 
Range = [0,∞)   Range = [−3,∞) 

vertical dilation by 4
3
; 

shift 3 units to the right;  
shift 2 units down 

29. vertex = (3,−2) 31. vertex = �−1, 3
2
� 33. vertex = (3,4)

Maximum value = −2; Minimum value = 3
2
; Maximum value = 4; 

Range = (−∞,−2] Range = �32,∞) Range = (−∞, 4] 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟓𝟓
𝟐𝟐

(𝒙𝒙 − 𝟐𝟐)𝟐𝟐 − 𝟒𝟒 

1 

2 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟒𝟒
𝟑𝟑

(𝒙𝒙 − 𝟑𝟑)𝟐𝟐 − 𝟐𝟐 

−2
3 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝟑𝟑(𝒙𝒙 − 𝟏𝟏)𝟐𝟐 

3 

1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) = (𝒙𝒙 + 𝟐𝟐)𝟐𝟐 − 𝟑𝟑 

−2

−3

𝑥𝑥 

𝒇𝒇(𝒙𝒙) =
𝟏𝟏
𝟐𝟐 (𝒙𝒙 + 𝟏𝟏)𝟐𝟐 +

𝟑𝟑
𝟐𝟐

2 

−1 𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −
𝟏𝟏
𝟒𝟒 (𝒙𝒙 − 𝟑𝟑)𝟐𝟐 + 𝟒𝟒 

3 

4 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −
𝟑𝟑
𝟒𝟒𝒙𝒙

𝟐𝟐 + 𝟑𝟑

2 

3 

𝑥𝑥 −1

5 

𝒇𝒇(𝒙𝒙) = −𝟑𝟑(𝒙𝒙+ 𝟏𝟏)𝟐𝟐 + 𝟓𝟓 

𝑥𝑥 
−2

3 

𝒇𝒇(𝒙𝒙) = −𝟐𝟐(𝒙𝒙 − 𝟑𝟑)𝟐𝟐 − 𝟐𝟐 
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35. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 3)2 − 4 37. 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 1)2 − 5 39. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 + 2)2 + 6

Q4  Exercises 

1. 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 3)2 + 1;  𝑉𝑉(−3,1) 3. 𝑓𝑓(𝑥𝑥) = �𝑥𝑥 + 1
2
�
2
− 13

4
;  𝑉𝑉(−1

2
,−13

4
) 

5. 𝑓𝑓(𝑥𝑥) = −�𝑥𝑥 − 7
2
�
2

+ 61
4

;  𝑉𝑉 �7
2

, 61
4
� 7. 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 − 1)2 + 15;  𝑉𝑉(1,15)

9. 𝑓𝑓(𝑥𝑥) = 1
2

(𝑥𝑥 + 3)2 − 11
2

;  𝑉𝑉 �−3,−11
2
� 11. 𝑉𝑉 �3

2
,−11

4
� 

13. 𝑉𝑉(1, 8) 15. 𝑉𝑉(−1,−23)

17. 𝑉𝑉 �− 3
2

,−9
4
� ; opens up 19. 𝑉𝑉(3,6); opens down 21. 𝑉𝑉(−3,0); opens up

shape of  𝑥𝑥2 shape of  𝑥𝑥2 shape of  2𝑥𝑥2

𝐷𝐷 = ℝ; Range = �− 9
4

,∞� 𝐷𝐷 = ℝ; Range = (−∞, 6] 𝐷𝐷 = ℝ; Range = [0,∞) 

23. 𝑉𝑉(1,3); opens down 25. zeros: −2, 2; 𝑉𝑉(0,−4); 27. zeros: 0, 4; 𝑉𝑉(2,−4);
shape of  2𝑥𝑥2 opens up; shape of  𝑥𝑥2 opens up; shape of  𝑥𝑥2

 𝐷𝐷 = ℝ; Range = (−∞, 3] Minimum value = −4   Minimum value = −4 
Minimum occurs at 𝑥𝑥 = 0 Minimum occurs at 𝑥𝑥 = 2 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑 
−2

−3 𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐 + 𝟔𝟔𝟔𝟔 − 𝟑𝟑 

1 

3 𝑥𝑥 −3

1 

𝒇𝒇(𝒙𝒙) = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟏𝟏𝟏𝟏𝟏𝟏+ 𝟏𝟏𝟏𝟏 

𝑥𝑥 

3 

1 

𝒇𝒇(𝒙𝒙) = −𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟏𝟏 

𝑥𝑥 2 

−4

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟒𝟒𝟒𝟒 

𝑥𝑥 

𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝟐𝟐)(𝒙𝒙+ 𝟐𝟐) 
−4

2 −2
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29. zero: 4; 𝑉𝑉(4,0); 31. zero: −1, 1; 𝑉𝑉(0,3); 33. zeros: 1, 5; 𝑉𝑉(3,6);
opens up; shape of  𝑥𝑥2 opens down; shape of  3𝑥𝑥2 opens down; shape of  32𝑥𝑥

2 

Minimum value = 0  Maximum value = 3  Maximum value = 6 
Minimum occurs at 𝑥𝑥 = 4 Maximum occurs at 𝑥𝑥 = 0 Maximum occurs at 𝑥𝑥 = 3 

35. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥(5𝑥𝑥 − 2) 37. 𝑓𝑓(𝑥𝑥) = 3
4(𝑥𝑥 − 1)(𝑥𝑥 − 4) 39. 𝑥𝑥(3𝑥𝑥 − 1) = 0

41. (𝑥𝑥 − 2)2 = 0

43. By observing the second coordinate of the vertex in combination with the opening. For example, the second
coordinate “+’ve” with openning up means no 𝑥𝑥-intercepts while the second coordinate “+’ve” with openning
down indicates 2 𝑥𝑥-intercepts.

45. true 47. true 49. true 51. 30.625 m; 5 sec

53. 20; $150 55. 16, 16 57. 4 m by 8 m

59. a. 𝑃𝑃(𝑛𝑛) = 60 − 2𝑛𝑛    b. 𝑅𝑅(𝑛𝑛) = (60 − 2𝑛𝑛)𝑛𝑛    c. 15     d. 450$

𝑥𝑥 

4 

4 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟖𝟖𝟖𝟖 + 𝟏𝟏𝟏𝟏 
𝑥𝑥 

𝒇𝒇(𝒙𝒙) = −𝟑𝟑�𝒙𝒙𝟐𝟐 − 𝟏𝟏� 
3 

1 𝑥𝑥 3 

6 

𝒇𝒇(𝒙𝒙) = −𝟑𝟑
𝟐𝟐

(𝒙𝒙 − 𝟏𝟏)(𝒙𝒙 − 𝟓𝟓) 
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 Trigonometry - ANSWERS

T1  Exercises 

1. 20.075° 3. 274.304°

5. 15.168° 7. 18°0′45′′

9. 65°0′5′′ 11. 175°23′58′′

13. 83°59′ 15. 33°50′

17. 28°03′03′′ 19. 60°, 150°

21. 45°, 135° 23. 74°30′ , 164°30′

25. 180 − 𝜃𝜃° 27. 

29. 31. 

33. 35. 

37. 15° 39. 135°

41. 30° + 𝑘𝑘 ∙ 360° 43. 𝑘𝑘 ∙ 360°

45. 𝛼𝛼° + 𝑘𝑘 ∙ 360° 47. 7.5°
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T2  Exercises

1. sin 𝜃𝜃 = 3
5
,   cos 𝜃𝜃 = 4

5
,   tan 𝜃𝜃 = 3

4
,   csc𝜃𝜃 = 5

3
,   sec𝜃𝜃 = 5

4
,   cot 𝜃𝜃 = 4

3
 

3. sin𝜃𝜃 = √3
2

,   cos 𝜃𝜃 = 1
2
,   tan𝜃𝜃 = √3,   csc𝜃𝜃 = 2√3

3
,   sec𝜃𝜃 = 2,   cot 𝜃𝜃 = √3

3
 

5. sin𝜃𝜃 = 𝑛𝑛
√𝑛𝑛2+4

= 𝑛𝑛√𝑛𝑛2+4
𝑛𝑛2+4

,  cos 𝜃𝜃 = 2
√𝑛𝑛2+4

= 2√𝑛𝑛2+4
𝑛𝑛2+4

,  tan𝜃𝜃 = 𝑛𝑛
2
,  csc 𝜃𝜃 = √𝑛𝑛2+4

𝑛𝑛
,  sec𝜃𝜃 = √𝑛𝑛2+4

2
,  cot 𝜃𝜃 = 2

𝑛𝑛
 

7. sin𝜃𝜃 = 4
5
,   cos 𝜃𝜃 = − 3

5
,   tan𝜃𝜃 = −4

3
 

9. sin𝜃𝜃 = −12
13

,   cos 𝜃𝜃 = 5
13

,   tan𝜃𝜃 = −12
5

 11. sin𝜃𝜃 = 0,   cos 𝜃𝜃 = −1,   tan𝜃𝜃 = 0

13. sin𝜃𝜃 = 5√34
34

,   cos 𝜃𝜃 = 3√34
34

,   tan𝜃𝜃 = 5
3
 15. sin𝜃𝜃 = − 1

2
,   cos 𝜃𝜃 = −√3

2
,   tan𝜃𝜃 = √3

3
 

17. sine, cosine, cosecant and secant are negative, tangent and cotangent are positive

19. negative

21. negative 23. positive

25. positive 27. negative

29. 1 31. −1

33. 0 35. 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

37. 0 39. cos𝛽𝛽 = −√5
3

tan𝛽𝛽 = 2√5
5
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T3  Exercises 

1. 0.6000 3. −0.9106

5. √2
2

7. √3
2

9. 1
2

11. 1

13. cos 67.5° 15. 82°

17. 13° 19. 6°

21. 𝑄𝑄III and 𝑄𝑄IV 23. 𝑄𝑄II

25. 𝑄𝑄IV 27. negative

29. negative 31. positive

33. positive 35. √3
2

37. 1
2

39. −√3
2

41. 1 43. 60°, 300°

45. 60°, 120° 47. 135°, 225°

49. 150°, 330° 51. sin𝛼𝛼 = −4
5

tan𝛼𝛼 = −4
3
 

T4  Exercises 

1. 52.2° 3. 68.4° 5. 60°

7. ∠𝐵𝐵 = 54°, 𝑏𝑏 ≃ 16.5, 𝑐𝑐 ≃ 20.4 9. ∠𝐴𝐴 ≃ 31.0°, ∠𝐵𝐵 ≃ 59.0°, 𝑐𝑐 ≃ 17.5

11. ∠𝐴𝐴 ≃ 74.4°, ∠𝐵𝐵 ≃ 15.6°, 𝑏𝑏 ≃ 2.6 13. 𝑎𝑎 = 2√3, 𝑏𝑏 = 6√3, 𝑑𝑑 = 4√3, ℎ = 6

15. 𝑎𝑎 = 5, 𝑏𝑏 = 5
2

, ℎ = 5√3
2

, 𝑠𝑠 = 5 17. 32√3 cm

19. 23° 21. 700 m

23. 317 m 25. 1101 km; direction of 107° (or S73°E)

27. 552 m; 447 m 29. 29.6 m 31. 237 m
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T5  Exercises 

1. ∠𝑃𝑃 = 39°, 𝑝𝑝 ≃ 15.3 cm, 𝑠𝑠 ≃ 22.8 cm 3. ∠𝐴𝐴 ≃ 25.9°, ∠𝐶𝐶 ≃ 18.1°, 𝑐𝑐 ≃ 19.3 ft

5. ∠𝐼𝐼 ≃ 19.8°, 𝑖𝑖 ≃ 8.8 cm, ∠𝐽𝐽 ≃ 122.2 7. 𝑏𝑏 = 10, ∠𝐶𝐶 = 120°, 𝑐𝑐 ≃ 17.3

9. ∠𝐴𝐴 ≃ 25.6°, 𝑎𝑎 ≃ 10.5, ∠𝐵𝐵 ≃ 9.4° 11. ∠𝑋𝑋 ≃ 40.6°, 𝑦𝑦 ≃ 18.4 m, ∠𝑍𝑍 ≃ 54.4°

13. 𝑝𝑝 ≃ 19.8 m, ∠𝑅𝑅 ≃ 33.1°, ∠𝑆𝑆 ≃ 129.9° 15. ∠𝐼𝐼 ≃ 48.5°, ∠𝐽𝐽 ≃ 86.3°, ∠𝐾𝐾 ≃ 45.2°

17. ∠𝐴𝐴 ≃ 17°, ∠𝐵𝐵 ≃ 103°, 𝑐𝑐 ≃ 8.9 19. ∠𝐴𝐴 ≃ 34.7°, ∠𝐵𝐵 ≃ 48.1°, ∠𝐶𝐶 ≃ 97.2°

21. No, because the ratio of sines of angles is not the same as the ratios of those angles.
For instance, sin90°

sin45°
= √2 ≠ 90°

45°
= 2. 

23. 127 m 25. 8.1 km; 11.0 km

27. ~ 6.4 m 29. ~ 351 m from 𝐴𝐴; ~ 295 from 𝐵𝐵

31. ~ 777 km; direction: ~ 279°2′ 33. ~26°

35. ~76 m 37. ~ 1199 m2

39. ~ 69° 41. ~247.3 m2
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